Full Content is available to subscribers

Subscribe/Learn More  >

A Large-Eddy Simulation of Bubble-Liquid Jets

[+] Author Affiliations
M. Yang, L. X. Zhou

Tsinghua University, Beijing, China

L. S. Fan

Ohio State University, Columbus, OH

Paper No. FEDSM2002-31214, pp. 327-332; 6 pages
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 2: Symposia and General Papers, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3616-9 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME


A Large-Eddy Simulation (LES) with a two-way coupling is used to study bubble-liquid two-phase confined jets in a two-dimensional channel. The results show the large-eddy vortex structures of both liquid flow and bubble motion, the shear-generated and bubble-induced liquid turbulence. For comparison, the second-order moment (SOM) modeling was also carried out for the same case. Both LES and SOM results indicate much stronger bubble fluctuation than the liquid fluctuation, the enhancement of liquid turbulence by bubbles even for the higher velocity case. Both shear production and the production due to bubble-liquid interaction are important for the liquid turbulence generation in the case studied. The LES statistical results and the SOM simulation results are in qualitative agreement with each other.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In