Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Trip-Strip/Impingement/Dimple Cooling Concepts at High Reynolds Numbers

[+] Author Affiliations
Yong W. Kim, Leonel Arellano, Mark Vardakas, Hee-Koo Moon, Kenneth O. Smith

Solar Turbines Incorporated, San Diego, CA

Paper No. GT2003-38935, pp. 703-709; 7 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


Modern industrial combustor liners employ various cooling schemes such as, but not limited to, impingement arrays, trip-strips, and film cooling. With an increasing demand for a higher turbine inlet temperatures and lower emissions, there is less air available to cool the combustor liner. To ensure the required liner durability without compromising engine performance more innovative cooling schemes are required. In the present work, three different cooling concepts, i.e., strip-strips, jet array impingement and dimples, operating at unusually high flow conditions were investigated. There is very little data available in the open literature for the aforementioned cooling schemes in the indicated Reynolds Number range (ReDh >60,000). The wall flow friction characteristics as well as the local heat transfer were measured. The heat transfer coefficients were obtained using a transient liquid crystal technique. The test configurations consisted of a 90° trip-strip surface (only one side turbulated), a fixed staggered array with varying impingement hole sizes, and a fixed staggered dimple pattern. For the Reynolds numbers investigated (26,000< ReDh <360,000), the jet-impingement cooling provided the highest average heat transfer enhancement followed by the trip-strip channel, and then by the dimpled channel. In terms of the overall thermal performance, the dimpled channel tends to stand out as the most effective cooling scheme. This is consistent with findings from other investigators at lower Reynolds numbers.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In