0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer Coefficients on the Squealer Tip and Near Tip Regions of a Gas Turbine Blade With Single or Double Squealer

[+] Author Affiliations
Jae Su Kwak, Jaeyong Ahn, Je-Chin Han

Texas A&M University, College Station, TX

C. Pang Lee

GE Aircraft Engines, Cincinnati, OH

Robert Boyle, Raymond Gaugler

NASA Glenn Research Center, Cleveland, OH

Ronald S. Bunker

GE Corporate R&D, Schenectady, NY

Paper No. GT2003-38907, pp. 681-690; 10 pages
doi:10.1115/GT2003-38907
From:
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME

abstract

Detailed heat transfer coefficient distributions on a gas turbine squealer tip blade were measured using a hue detection based transient liquid crystals technique. The heat transfer coefficients on the shroud and near tip regions of the pressure and suction sides of a blade were also measured. Squealer rims were located along (a) the camber line, (b) the pressure side, (c) the suction side, (d) the pressure and suction sides, (e) the camber line and the pressure side, and (f) the camber line and the suction side, respectively. Tests were performed on a five-bladed linear cascade with a blow down facility. The Reynolds number based on the cascade exit velocity and the axial chord length of a blade was 1.1×106 and the overall pressure ratio was 1.2. Heat transfer measurements were taken at the three tip gap clearances of 1.0%, 1.5% and 2.5% of blade span. Results show that the heat transfer coefficients on the blade tip and the shroud were significantly reduced by using a squealer tip blade. Results also showed that a different squealer geometry arrangement changed the leakage flow path and resulted in different heat transfer coefficient distributions. The suction side squealer tip provided the lowest heat transfer coefficient on the blade tip and near tip regions compared to the other squealer geometry arrangements.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In