Full Content is available to subscribers

Subscribe/Learn More  >

Turbulent Jet Injected Into a Cross Flow: Analysis of the Flow Structure and Wall Pressure Fluctuations

[+] Author Affiliations
Shridhar Gopalan, Joseph Katz

Johns Hopkins University, Baltimore, MD

Bruce Abraham

Anteon Corporation, Mystic, CT

Paper No. FEDSM2002-31420, pp. 267-274; 8 pages
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 2: Symposia and General Papers, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3616-9 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME


The objective of this study is to characterize the velocity, vorticity, wall pressure fluctuations and resulting structural vibrations caused by injection of a round, turbulent jet into a turbulent boundary layer. The experiments are performed in a quiet water channel with back ground noise well below the local pressure fluctuations. One of the channel walls is replaced by a vibration isolated, 1m long, aluminum plate from which the 1cm-diameter jet is injected. The cross flow velocity is fixed at 2 m/s and the velocity ratio, r (ratio of mean jet velocity to the cross flow), varies from 0.5 to 2.5 and Re based on cross flow and jet diameter is 20,000. High-resolution PIV is used to measure the flow field and high sensitivity, low-noise pressure sensors are used for the wall pressure measurements. The flush-mounted transducers are installed at several locations ranging from 2–15 diameters behind the jet. Auto-spectra of the pressure signals show that the effect of the jet is in the 15–100Hz range, and increase the wall pressure levels by 25dB for r = 2.5. The fluctuations increase with velocity ratio and decrease with distance from the jet, although there is only a 6dB increase in overall levels at r = 2.5 as compared to r = 1. Hilbert-Huang “amplitude” spectrum shows the frequency content of the signal as it evolves in time, and is found to be a useful tool to characterize such unsteady phenomena. Velocity and pressure measurements have been performed simultaneously and thousands of frames have been recorded. Analysis of these frames demonstrates the relationship between the pressure fluctuations and the vortical structures. Several striking differences in the flow structure between high and low velocity ratios are described in the paper.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In