Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Film Cooling Effectiveness of Full-Coverage Inclined Multihole Walls With Different Hole Arrangements

[+] Author Affiliations
Yuzhen Lin, Bo Song, Bin Li, Gaoen Liu, Zhiyong Wu

Beijing University of Aeronautics and Astronautics, Beijing, P. R. China

Paper No. GT2003-38881, pp. 651-660; 10 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


An experimental and numerical investigation of adiabatic film cooling effectiveness was conducted on four full-coverage inclined multihole walls with different hole arrangements. The hole geometrical patterns and the test conditions were chosen to be representative of film cooling designs for modern aeroengine combustor liners. The four hole arrangements were grouped into two types based on lateral hole pitch ( P ) and streamwise row spacing ( S ). One type included two test plates which had the same S and P (S/P = 2) and compound angle (β = 0 deg) but different hole inclination angles ( α ) (30 and 150 deg ). The other type included two test plates which had the same S and P (but S/P = 1) and inclination angle (α = 30 deg) but different compound angles (0 deg and 50 deg). Heat-mass transfer analogy method was employed to investigate the adiabatic film cooling effectiveness of these multihole walls with typical blowing ratios for aeroengine combustors. The numerical simulation was performed to characterize the flowfield and temperature distribution, aiming to further understand the film cooling mechanisms. The experimental results indicated that blowing ratio within the range from 1 to 4 had negligible influence on adiabatic film cooling effectiveness (η) in the case of concurrent coolant injection while hole arrangement had large effect on η. But the blowing ratio within the range from 1 to 4 had large effect on the film cooling effectiveness for the counterflow film cooling scheme. The numerical results were compared with experimental data and fairly good agreement was obtained. The numerical simulation revealed the flow structure, particularly exhibiting significant influence of the interaction between mainstream flow and coolant jets on η. With validation by experimental data, film cooling numerical simulation seems quite helpful in selecting optimum multihole arrangement for modern combustor liner design.

Copyright © 2003 by ASME
Topics: Cooling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In