0

Full Content is available to subscribers

Subscribe/Learn More  >

Vector Positioning for Cross Correlation PIV

[+] Author Affiliations
C. N. Young, R. Gilbert, D. A. Johnson, E. J. Weckman

University of Waterloo, Waterloo, ON, Canada

Paper No. FEDSM2002-31171, pp. 183-192; 10 pages
doi:10.1115/FEDSM2002-31171
From:
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 2: Symposia and General Papers, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3616-9 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME

abstract

Continuing advances in digital imaging technology stimulate greater interest in applying particle image velocimetry (PIV) over increasingly larger fields of view. Unfortunately when larger fields of view are analyzed, velocity gradients in the image become more localized. In addition, non-uniformities in image illumination and particle number density become more prevalent. These factors, coupled with the requirement that large areas of interest (AOIs) must be employed to measure the full range of velocity, cause degradation of correlation results (i.e. broadening and/or splintering of the cross correlation peak) which leads to positional bias errors in the measured velocity field. More advanced super resolution strategies that employ an iterative AOI reduction process inherently reduce positional bias in PIV results but these strategies can break down in complex flows where velocity gradients are steep and particle dispersion does not remain uniformly random. To mitigate these problems a simple but effective technique is presented that enables individual velocity vectors to be placed within an AOI at locations toward which the cross correlation plane is biased. The method involves analysis of the correlation plane to extract the dominant features that are matched in two successive AOIs. To demonstrate the utility of the methodology results obtained from synthetic images are compared against results obtained using the conventional PIV approach.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In