Full Content is available to subscribers

Subscribe/Learn More  >

Study of 3D Mixing Processes by Numerical and Experimental Approaches

[+] Author Affiliations
Y. Zhao, R. S. Brodkey, S. Nakamura

Ohio State University, Columbus, OH

Paper No. FEDSM2002-31169, pp. 169-175; 7 pages
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 2: Symposia and General Papers, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3616-9 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME


Mixing vessels are widely used for blending and chemical reactions. Although much has been done on mixing processes, the complex, three-dimensional flow phenomena are still not well understood. The purpose of our first step in this research is the simulation and validation of time-resolved, three-dimensional velocity vector data. Such results are an essential part of the design of mixing systems, but are generally not available to the engineers. The computational work involves direct numerical simulation (DNS) and large eddy simulation (LES) of the Navier-Stokes equations. Later, modeling of the Reynolds averaged Navier-Stokes (RANS) equations will be undertaken as a simplified approach. Simulations and modeling are being validated by experiments. Two flow mixing systems are under investigation. First and most important for validation is an opposed jet flow system that offers some unique characteristics that can be used for validation of DNS/LES simulations. It also has applications in the injection molding of plastics. Second, simulations of impeller driven mixing vessels that are more commonly used in processing are under development. Here the moving mesh system adds complexity. In addition, visualization of both numerical and experimental results, 3-D particle tracking velocimetry (PTV) techniques have been developed. The proposed paper will address the problems in the modeling of chemical mixing and discuss the results of simulation and validation.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In