0

Full Content is available to subscribers

Subscribe/Learn More  >

Ability of a Popular Turbulence Model to Capture Curvature Effects: A Film Cooling Test Case

[+] Author Affiliations
Satish Undapalli, James H. Leylek

Clemson University, Clemson, SC

Paper No. GT2003-38638, pp. 527-539; 13 pages
doi:10.1115/GT2003-38638
From:
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME

abstract

Computations are performed in conjunction with code validation quality experiments found in the open literature to specifically address the usage of popular two-equation eddy viscosity models in day-to-day gas turbine applications. In such simulations many features such as pressure gradients, curvature effects are present. The present work is focused on testing a popular turbulence model to resolve film cooling on curved surfaces. A systematic computational methodology has been employed in order to minimize numerical errors and evaluate the performance of a popular turbulence model. The test cases were examined for a single row of holes, blowing rates ranging from 1 to 2.5, isolated effects of convex and concave curvature on film cooling, density ratio close to 2, and an injection angle of 35°. Key aspects of the study include: (1) extremely dense, high quality, multi-block, multi-topology grid involving over 3 million finite volumes; (2) higher order discretization; (3) turbulence model with two-layer near-wall treatment; (4) strict convergence criteria; and (5) grid independence. A fully-implicit, pressure-correction Navier-Stokes solver is used to obtain all the solutions. Results for adiabatic cooling effectiveness are compared with measurements in order to document the: (1) Range of applicability of the present modeling capability; and (2) Possible reasons for discrepancies. The data shows that the computations predicted the effects of curvature on mean flow, however effect on turbulence field is not captured. A clear set of recommendations is provided for future treatments of this class of problems.

Copyright © 2003 by ASME
Topics: Cooling , Turbulence

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In