Full Content is available to subscribers

Subscribe/Learn More  >

Measurement and Prediction of Heat Transfer Distributions on an Aft Loaded Vane Subjected to the Influence of Catalytic and Dry Low NOx Combustor Turbulence

[+] Author Affiliations
F. E. Ames, M. Argenziano, C. Wang

University of North Dakota, Grank Forks, ND

Paper No. GT2003-38509, pp. 331-341; 11 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


This paper documents heat transfer rates on an aft loaded vane subject to turbulence generated by mock combustion configurations representative of recently developed catalytic and dry low NOx (DLN) combustors. New combustion systems developed for low emissions have produced substantial changes to the characteristics of inlet turbulence entering nozzle guide vanes. Aft loaded vane designs can have an impact on surface heat transfer distributions by accelerating boundary layers for a greater portion of the suction surface. Four different inlet turbulence conditions with intensities ranging up to 21 percent are documented in this study and vane heat transfer rates are acquired at vane exit chord Reynolds numbers ranging from 500,000 to 2,000,000. Heat transfer distributions show the influence of the turbulence conditions on heat transfer augmentation and transition. Cascade aerodynamics are well documented and match pressure distributions predicted by a commercial CFD code for this large scale low speed facility. The aft loaded vane pressure distribution exhibits a minimum value at about 50 percent arc on the suction surface. Laminar heat transfer augmentation in the stagnation region and on the pressure surface have scaled well on theoretical parameters based on turbulence intensity, Reynolds number, and energy scale. Predictive comparisons are shown based on a two-dimensional boundary layer code using an algebraic turbulence model for augmentation as well as a transition model. This comprehensive vane heat transfer data set is expected to represent an excellent test case for vane heat transfer predictive methods.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In