Full Content is available to subscribers

Subscribe/Learn More  >

Computation of Flow and Heat Transfer in Rotating Rectangular Channels (AR = 4) With V-Shaped Ribs by a Reynolds Stress Turbulence Model

[+] Author Affiliations
Guoguang Su, Shuye Teng, Hamn-Ching Chen, Je-Chin Han

Texas A&M University, College Station, TX

Paper No. GT2003-38348, pp. 237-246; 10 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


Computations were performed to study three-dimensional turbulent flow and heat transfer in a rotating rectangular channel with 45° V-shaped ribs. The channel aspect ratio (AR) is 4:1, the rib height-to-hydraulic diameter ratio (e/Dh ) is 0.078 and the rib-pitch-to-height ratio (P/e) is 10. A total of eight calculations have been performed with various combinations of rotation number, Reynolds number, coolant-to-wall density ratio, and channel orientation. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.122 to 0.40, respectively, while the Reynolds number varied from 10,000 to 500,000. Three channel orientations (90°, −135°, and 135° from the rotation direction) were also investigated. A multi-block Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure for detailed predictions of mean velocity, mean temperature, turbulent Reynolds stresses, and heat fluxes and heat transfer coefficients.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In