Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Liquid Crystal Image Processing Technique Using Multiple Gas Temperature Steps to Determine Heat Transfer Coefficient Distribution and Adiabatic Wall Temperature

[+] Author Affiliations
Abd. Rahim Abu Talib, Peter T. Ireland

University of Oxford, Oxford, UK

Andrew J. Neely

University of New South Wales, Canberra, ACT, Australia

Andrew J. Mullender

Rolls-Royce plc, Derby, UK

Paper No. GT2003-38198, pp. 123-131; 9 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


This paper presents a novel experimental technique, which combines thermochromic liquid crystals with multiple steps in gas temperature, to determine heat transfer coefficient and adiabatic wall temperature distributions. The transient heat transfer experiments have been conducted on a flat plate using the low-temperature analogue of an ISO standard propane-air burner commonly used in aero-engine fire certification. The technique involves the measurement of the surface temperature response of an insulating model to a change in gas temperature. A coating comprising more than one thermochromic liquid crystal material is used to increase the range of the surface measurement and this is combined with multiple step changes in gas temperature. These measures induce several peaks in liquid crystal intensity throughout the transient experiment and these are shown to improve the accuracy. The current technique employs useful data from both the heating and cooling phases in the heat transfer test. To the authors’ knowledge, this has not been investigated before and it is likely to be very useful for other applications of the liquid crystal transient heat transfer experiment. The uncertainties in all measurements have been quantified and are presented in this paper.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In