0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer and Pressure Drop Evaluation in Thin Wedge-Shaped Trailing Edge

[+] Author Affiliations
C. Carcassi, B. Facchini, L. Innocenti

Università degli Studi di Firenze, Firenze, Italy

Paper No. GT2003-38197, pp. 111-122; 12 pages
doi:10.1115/GT2003-38197
From:
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME

abstract

In modern high loaded transonic turbines the aerodynamic losses of turbine airfoils are mostly covered by the thickness and the wedge angle of the blade trailing edges. Due to the aerodynamic requirements the thin trailing edges are the life limiting parts of the airfoils. The aerodynamic design requirements lead to trailing edge slots with extreme aspect ratio and huge fillet radius in relation to the internal slot geometry. In most cases, the conventional design tools are not validated for these geometries, therefore an improved knowledge of flow and heat transfer in this area is necessary. This paper discusses the measurements of endwall heat transfer coefficient and pressure drops in a wedge-shaped duct with two different turbulators arrangement. The first one is concerning five different long ribs (pedestals) configurations disposed streamwise while the other one is related to three configurations of staggered pin fins. Pedestals and pin fins stand vertically on the bottom surface of the wedge–shaped duct. This surface, named endwall, is coated with a thin layer of thermochromic liquid crystals and several transient tests are run to obtain detailed heat transfer coefficient distributions. Both for the pedestal and pin fins several parametric studies has been performed, varying both Reynolds number range (from 9000 to 27000) and turbulators configurations while outlet Mach number was set to 0.3 for all tests. Investigated pedestal configurations are different for turbulators spanwise pitch while pin fins geometry have different pin diameter values. In all cases the wedge duct angle is 10°. Results indicate that the smallest long ribs pitch and pin fin diameter are most recommended because of its significant endwall heat transfer and moderate pressure-drop penalty. Long ribs and pin-fins are aluminium made in order to evaluate an average value of the heat transfer coefficient on their side surface. So a valuation of global heat transfer coefficient in the internal trailing edge cooling duct become possible.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In