Full Content is available to subscribers

Subscribe/Learn More  >

State Space Identification of Nonlinear Hydrodynamic Bearing by Eigensystem Realization Algorithm (ERA)

[+] Author Affiliations
T. N. Shiau, M. S. Tsai, C. H. Cheng

National Chung Cheng University, Chia Yi, Taiwan, R.O.C.

Paper No. GT2003-38612, pp. 551-560; 10 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 4: Turbo Expo 2003
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3687-8 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


Large vibration of a rotor-bearing system excited by unbalance of rotor shaft or external forces can deteriorate the performance and shorten the lifetime of the system. The hydrodynamic bearing can provide desirable damping for a rotor-bearing system. In order to fully utilize the function of the hydrodynamic bearing for vibration reduction, a state-space technique is developed to identify the parameters (stiffness and damping) of the linearized hydrodynamic bearing. The eigensystem realization algorithm (ERA) is adopted to find the discrete state space model of system. It is shown that the ERA approach can be a very effective way for identification of the rotor-bearing system. The discrete state space model is further transformed to the continuous model that can be utilized to obtain the coefficients for the hydrodynamic bearing system. By comparing the output signal of the identified system and the nonlinear rotor-bearing dynamic model, the identification accuracy is verified. More simulation results on different values of eccentricity are also plotted to show the characteristic of a hydrodynamic bearing.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In