Full Content is available to subscribers

Subscribe/Learn More  >

Rotordynamic Performance of Finite Length Squeeze Film Dampers

[+] Author Affiliations
A. El-Shafei, A. S. El-Kabbany

Cairo University, Giza, Egypt

Paper No. GT2003-38457, pp. 499-507; 9 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 4: Turbo Expo 2003
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3687-8 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


A recently developed finite length model of squeeze film dampers is extended and used in predicting the behavior of a rigid rotor supported by squeeze film dampers (SFDs). The model is based on a perturbation solution of Reynolds’ equation. The finite length SFD damping coefficients are presented for various L/R ratios. The effect of damper finite length is studied. Simulations of the behavior of a rigid rotor with the finite length SFDs illustrate the response of the roto-rbearing system. The accuracy of the finite damper model is shown for cases comparable to short and long dampers models. The short damper and long damper models are generally accepted to be valid for L/D < 1/4, and for L/D > 4, respectively. The capability of the finite length damper model to capture the main essence of the L/R ratio on the rotor response at resonance is illustrated. Analytical formulae for damping estimates are provided for finite length dampers. It is shown that the finite length damper actually provides less damping than either the short or the long damper models, which means that current design practices actually overestimate the SFD damping capabilities.

Copyright © 2003 by ASME
Topics: Dampers



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In