0

Full Content is available to subscribers

Subscribe/Learn More  >

A Simple Kinematic Model for the Behavior of a Magnetically Levitated Rotor Operating in Overload Regime

[+] Author Affiliations
E. N. Cuesta, L. U. Medina, V. R. Rastelli, N. I. Montbrun, S. E. Díaz

Universidad Simón Bolívar, Caracas, Venezuela

Paper No. GT2003-38024, pp. 439-446; 8 pages
doi:10.1115/GT2003-38024
From:
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 4: Turbo Expo 2003
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3687-8 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME

abstract

Currently, the use of magnetic levitation systems has incremented in lieu of the many advantages they present respect to conventional systems. They provide frictionless operation and thus, a wearless life, eliminate the need for lubricants and allow for active vibration control. However, there are some limitations to their use, the dynamic load capacity is restricted by the magnetic properties of the materials used in their constructions and, therefore, their tolerance to large dynamic loads, such as in the case of blade loss or similar sudden failures, is small. For these cases, as well as for the case of bearing power loss, all commercial magnetic suspensions contain a safety backup system, usually consisting of roller bearings that avoid contact between stationary and rotating parts. The present work analyses the behavior of a rotor supported by a magnetic radial bearing on the non-drive end, which is operated in an overload regime. In this regime, a series of impacts occurs between the rotor and the backup bearing, which results on a highly non-linear system that might become unstable depending on the geometry, the control algorithm, the speed and excitation conditions. A non-linear model is proposed. The equations are separated into two regimes, one when the rotor is levitated and one during contact with the backup bearings; the contact is modeled by kinematic conditions. The magnetic bearing forces are estimated using a non-linear model and a PID algorithm is considered as a system’s control strategy. Rigid body theory for planar collision is considered for description of impacts between the backup bearing and the rotor.

Copyright © 2003 by ASME
Topics: Rotors

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In