Full Content is available to subscribers

Subscribe/Learn More  >

An Investigation of Turbomachinery Shrouded Rotor Blade Flutter

[+] Author Affiliations
Hsiao-Wei D. Chiang, Chi-Chin Chen, Chih-Neng Hsu

National Tsing Hua University, Hsinchu, Taiwan, R.O.C.

Gwo-Chung Tsai

National I-LAN Institute of Technology, I-LAN, Taiwan, R.O.C.

Kwang-Lu Koai

Taiwan Power Company, Taipei, Taiwan, R.O.C.

Paper No. GT2003-38311, pp. 331-338; 8 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 4: Turbo Expo 2003
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3687-8 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


Turbomachinery shrouded rotor blade design has been widely used in fans, compressors, and turbines. By using shroud design, the blade structural damping can be increased to prevent blade flutter. However, the shrouded rotor blade design will cause the blade mode shapes to be complex, and in some cases both bending and torsion mode components can be present at the same time in a single mode. Therefore, a complex mode analysis was developed to predict shrouded rotor blade flutter with these bending and torsion combined system modes. Using the blade natural frequencies and mode shapes from a finite element model, and the blade aerodynamic flow-field, the unsteady aerodynamic forces of the system mode can be calculated. A complex mode flutter analysis was then performed using a modal solution to determine the stability of the system. The analysis system was applied to two shrouded rotor blade applications. The bending and torsion combined system mode was decomposed into a real mode component and an imaginary mode component. Bending-dominated or torsion-dominated mode shapes can be analyzed using single mode approach to obtain consistent flutter stability results. However, for the bending and torsion combined mode shape cases, the single mode analysis can be misleading, and the complex mode analysis can be a useful tool.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In