0

Full Content is available to subscribers

Subscribe/Learn More  >

Identification of the Maximum Responding Blade in Mistuned Bladed Disks

[+] Author Affiliations
Bing Xiao, Alejandro J. Rivas-Guerra, Marc P. Mignolet

Arizona State University, Tempe, AZ

Paper No. GT2003-38966, pp. 299-309; 11 pages
doi:10.1115/GT2003-38966
From:
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 4: Turbo Expo 2003
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3687-8 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME

abstract

This paper focuses on the identification/prediction of the blade exhibiting the largest response in mistuned bladed disks. This information is very important in experimental/testing efforts as it permits the most effective positioning of a few gages to capture the maximum response on the disk. In computational statistical analyses, knowing the highest responding blade is also quite valuable as it may lead to computational savings in the determination of the maximum response. Different strategies are proposed here for the experimental and computational contexts. In the former situation, mistuning is typically unknown but only one or a few disks must be considered. The proposed solution is then to estimate the mistuned blade properties and to rely on this identified bladed disk model to predict the blades that are likely to exhibit the largest responses through exact, full disk solutions. On the contrary, in computational statistical analyses, mistuning is specified but a potentially large number of disks must be analyzed and it is desired to bypass the ensemble of full disk solutions. Accordingly, a novel, computationally very efficient algorithm is proposed for a preliminary estimation of the forced response of mistuned disks from which the blades that are likely to exhibit the largest responses can be predicted. Examples of application on single- and two-degree-of-freedom per blade models and a reduced order model of a blisk demonstrate the reliability of the proposed strategies.

Copyright © 2003 by ASME
Topics: Disks , Blades

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In