0

Full Content is available to subscribers

Subscribe/Learn More  >

Computation of the Statistics of Forced Response of a Mistuned Bladed Disk Assembly via Polynomial Chaos

[+] Author Affiliations
Alok Sinha

Pennsylvania State University, University Park, PA

Paper No. GT2003-38961, pp. 287-297; 11 pages
doi:10.1115/GT2003-38961
From:
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 4: Turbo Expo 2003
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3687-8 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME

abstract

The method of polynomial chaos has been used to analytically compute the statistics of forced response of a mistuned bladed disk assembly. The model of the bladed disk assembly considers only one mode of vibration of each blade. Mistuning phenomenon has been simulated by treating the modal stiffness of each blade as a random variable. The validity of the polynomial chaos method has been corroborated by comparison with the results from numerical simulations.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In