0

Characterization Improvement Through Signal Processing: Application to Radiography Inspection — 3D Reconstruction PUBLIC ACCESS

[+] Author Affiliations
Laurence Chatellier, Valery E. Just, Louis Fournier, Bruno Charbonnier, Lionel Robillard

EDF-R&D, France

Paper No. PVP2005-71617, pp. 119; 1 page
doi:10.1115/PVP2005-71617
From:
  • ASME 2005 Pressure Vessels and Piping Conference
  • Volume 5: High Pressure Technology, Nondestructive Evaluation, Pipeline Systems, Student Paper Competition
  • Denver, Colorado, USA, July 17–21, 2005
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4190-1 | eISBN: 0-7918-3763-7
  • Copyright © 2005 by ASME

abstract

During in-service inspections, experts are faced with the delicate task of establishing a complete diagnosis of defects from radiographs. Should a defect be detected, one must be able to demonstrate that the component still meets regulatory requirements. Thus, it is essential to be able to characterize precisely the defect, especially when the demonstration relies on mechanical calculus. However the characterization of the defect by only g or X-ray is sometimes very difficult, and the justification process can thus be jeopardized. In such cases, signal processing can be very helpful for the interpretation of the data and for the characterization (positioning and sizing) of the defect. This paper presents a 3-D reconstruction processing in hard conditions representatives of pipe inspections: the incidence angle is very reduced and thus the radiographs contain very little information along the vertical direction. The reconstruction process relies on the estimation of the attenuation. It is called inversion because it restores the attenuation from both data and prior information. The method has been tested on radiographs of a block with real defects and the performances were evaluated from a mock-up with several electro-drilled cylindrical defects. Even in the case of limited incidence, the method provides very useful 3D results. Moreover this process can be applied whatever the nature of the source. When a larger source is used in order to inspect thick components, signal processing allows to reduce the inevitable blur which leads to improved accuracy. In conclusion, signal processing and especially 3D reconstruction in the case of radiography can turn out to be a key step fur in-service inspection of major NPP components.

Copyright © 2005 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In