Full Content is available to subscribers

Subscribe/Learn More  >

Gasification and Fuel Cell Integration With Bottoming Turbine Cycle: Performances of a Hybrid Plant for Electricity Production

[+] Author Affiliations
P. Lunghi, R. Burzacca

Università di Perugia, Perugia, Italy

Paper No. FUELCELL2003-1740, pp. 355-362; 8 pages
  • ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology
  • 1st International Fuel Cell Science, Engineering and Technology Conference
  • Rochester, New York, USA, April 21–23, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3668-1
  • Copyright © 2003 by ASME


The increasing need of energy resources along with the growing environmental interest promote the creation of new concepts in the field of energy production and management strategies. The development of high temperature fuel cells, suitable for stationary energy production, is one of the most promising aspects, able to bring a significant change in the power generation scenario. One of the most important features for fuel cells is the potential coupling with advanced gasification systems, thus enabling the possibility of energy recovery from waste, RDF (Refuse Derived Fuel) and biomass. The gasification process transfers the energetic value of the original solid fuel to a gaseous product rich in hydrogen, carbon monoxide and dioxide, and other compounds. A post-gasification treatment removes tars, particulates, impurities and makes the gas suitable for power production in a fuel cell unit. In this work an example of an innovative plant for biomass utilization has been considered. The plant includes a gasification section and a Molten Carbonate Fuel Cell unit, coupled with a hot gas cleanup system. For gasification technology, a recent typology was considered involving an indirect heating system such as the Battelle process. Gaseous streams conveyed to the cell after the conditioning processes were considered. In order to achieve higher efficiencies, a bottoming cycle has been added. It comprises a turbine power plant integrated with the gasification and fuel cell lay-out. In the turbine cycle air is compressed in the operating pressure and internally heated by the waste heat of the fuel cell and of the gasification process. The expanded air is then used in the combustion reactor of the gasification system. The proposed plant allows high electric efficiency and high flexibility in choosing for air compression ratio and unit size; sensitivity analyses were performed.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In