0

Full Content is available to subscribers

Subscribe/Learn More  >

Relative Robots: Scaling Automated Assembly of Discrete Cellular Lattices

[+] Author Affiliations
Matthew Carney, Benjamin Jenett

Massachusetts Institute of Technology, Cambridge, MA

Paper No. MSEC2016-8837, pp. V002T01A019; 11 pages
doi:10.1115/MSEC2016-8837
From:
  • ASME 2016 11th International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
  • Blacksburg, Virginia, USA, June 27–July 1, 2016
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4990-3
  • Copyright © 2016 by ASME

abstract

We propose metrics for evaluating the performance of robotically assembled discrete cellular lattice structures (referred to as digital materials) by defining a set of tools used to evaluate how the assembly system impacts the achievable performance objective of relative stiffness. We show that mass-specific stiffness can be described by the dependencies E*(γ, D(n, f, RA)), where E* is specific modulus, γ is lattice topology, and the allowable acceptance of the joint interface, D, is defined by an error budget analysis that incorporates the scale of the structure, and/or number of discrete components assembled, n, the type of robotic assembler, RA, and the static error contributions due to tolerance stack-up in the specified assembler structural loop, and the dynamic error limitations of the assembler operating at specified assembly rates, f. We refer to three primary physical robotic construction system topologies defined by the relationship between their configuration workspace, and the global configuration space: global robotic assembler (GR), mobile robotic assembler (MR), and relative robotic assemblers (RR), each exhibiting varying sensitivity to static, and dynamic error accumulation. Results of this analysis inform an iterative machine design process where final desired material performance is used to define robotic assembly system design parameters.

Copyright © 2016 by ASME
Topics: Robots , Manufacturing

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In