Full Content is available to subscribers

Subscribe/Learn More  >

sHAWT Design: Airfoil Aerodynamics Under the Influence of Roughness

[+] Author Affiliations
D. Holst, G. Pechlivanoglou, C. T. Kohlrausch, C. N. Nayeri, C. O. Paschereit

Technische Universität Berlin, Berlin, Germany

Paper No. GT2016-56377, pp. V009T46A005; 10 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4987-3
  • Copyright © 2016 by ASME


Small horizontal axis wind turbines (sHAWTs) are mostly designed by smaller companies with no or just small possibilities of aerodynamic testing and hence, airfoil selection is often based on published performance data and minimal or no experimental testing from the blade designer’s side. This paper focuses on the aerodynamic consequences resulting from an unqualified airfoil selection and accumulating surface soiling. The high performance low Reynolds profile FX 63-137 is compared to an Eppler-338 wing section as well as to a high performance utility scale wind turbine airfoil, AH 93-W-174 -1ex. We extensively investigated these three different airfoils within the low Reynolds regime between 50,000 and 200,000. This regime is especially important for the starting behavior of a wind turbine, i.e. a quick speed up, and is crucial for small wind turbines because they have more frequent start/stop events. A Reynolds number of 200 k is additionally the operational regime of some sHAWT under the 5–10 kW level.

The present study discusses not only the low Reynolds performance of the smooth profiles but investigates the influence of surface soiling. This ranges from 2D disturbances, such as a 0.2mm thin tripwire or several zigzag tapes, up to the simulation of massive sand build up by covering the entire leading edge region with a 40 grit sand paper. The experiments reveal that even small surface soiling has an impact and massive roughness leads in some cases to the loss of 50% in lift coefficient. The experimental data is used to simulate a sHAWT in different stages of debris. While the peak power was reduced by two thirds compared to the clean configuration the annual energy production has halved under certain conditions.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In