Full Content is available to subscribers

Subscribe/Learn More  >

Feasibility of a Direct Coupled Turbine-Compressor Power Block for S-CO2 Brayton Cycles

[+] Author Affiliations
Eshan Dhar, Pramod Kumar

Indian Institute of Science, Bangalore, India

Shreyas Srivatsa

University of Maryland, College Park, MD

Paper No. GT2016-56847, pp. V009T36A009; 10 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4987-3
  • Copyright © 2016 by ASME


This paper explores the feasibility of a direct coupled turbo-compressor power block for a simple recuperated S-CO2 Brayton cycle. The turbine inlet temperature is fixed at 600°C and the maximum working pressure is restricted to 300 bar due to material constraints to enable use of conventional steel alloys. Analysis is performed for a single stage radial flow turbine and a centrifugal compressor configuration. Mean-line flow is individually analyzed for the turbine and compressor to generate contour maps of optimum operating speeds for a range of power levels at various isentropic efficiencies. While performing the mean-line analysis real gas properties and friction coefficients of S-CO2 have been considered. The mean-line flow code is coupled with thermodynamic model of the simple recuperated S-CO2 Brayton cycle for generating a range of optimum operating conditions where direct coupled power blocks can be used.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In