Full Content is available to subscribers

Subscribe/Learn More  >

An Academic Test Rig for Industrial Centrifugal Compressor Stages: A Design Approach

[+] Author Affiliations
Alessandro Bianchini, Giovanni Ferrara

University of Firenze, Firenze, Italy

Lorenzo Ferrari

CNR-ICCOM, Firenze, Italy

Paper No. GT2016-57697, pp. V009T24A021; 11 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4987-3
  • Copyright © 2016 by ASME


Due to the huge amount of power connected to centrifugal compressors’ applications, even small rangeability increases of the stages would provide significant energy and money savings. In particular, industrial manufacturers pay lot of interest in better understanding the instabilities that in many cases define the minimum flow limit of their stages, but they are often hampered in the research by the short time-to-market. On the other hand, academia has historically found difficulties in approaching the problem due to the lack of dedicated experimental facilities.

In this study, the concept design of a new research test rig is presented. The rig will be able to test impellers in field-like conditions (original mass flow and peripheral Mach numbers up to 0.7), operating in open-loop configuration with ambient inlet conditions. In view of systematic test campaigns, a modular design will allow to easily replace any component of the asset and even to modify the flowpath after the impeller, so that the influence of each component can be estimated. As a research academic facility, the rig is characterized by some new design solutions, oriented to minimize the mechanical complexity, the energy consumption, the overall dimensions, and, finally, the cost. Moreover, it will be equipped with advanced experimental measurement instrumentation, e.g. a PIV system or fast response aerodynamic pressure probes.

The paper illustrates the conceptual design of the rig, including the selection of the best architecture and layout, the drivetrain assessment and the rotordynamic verification. Computational fluid-dynamic analyses are also presented, aimed at verifying the flow uniformity in the discharge sections and the thermal stability of the system during the tests.

Copyright © 2016 by ASME
Topics: Compressors , Design



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In