Full Content is available to subscribers

Subscribe/Learn More  >

A Hybrid Master-Slave Genetic Algorithm-Neural Network Approach for Modeling a Piezoelectric Actuator

[+] Author Affiliations
Mohamed B. Trabia, Mohammad Y. Saadeh

University of Nevada, Las Vegas, Las Vegas, NV

Paper No. SMASIS2012-7925, pp. 281-294; 14 pages
  • ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring
  • Stone Mountain, Georgia, USA, September 19–21, 2012
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4509-7
  • Copyright © 2012 by ASME


This work presents an approach for developing the model of a smart fin dynamics that is activated by a fully-enclosed piezoelectric (PZT) bimorph actuator, which is created by bonding two Macro Fiber Composites (MFCs). Observing the dynamics of the fin indicates that the use of a linear dynamic model does not adequately describe its behavior. An earlier work proposed incorporating a proportional damping matrix as well as Bouc-Wen hysteresis model and backlash operators to create a more accurate model. However, the number of parameters describing the expanded model is large, which limits its use. Therefore, there is a need for a different approach for developing an alternative model of the fin. In this work, a hybrid master-slave Genetic Algorithm (GA)-Neural Network (NN) model is proposed to identify the optimal set of parameters for the damping matrix constants, the Bouc-Wen hysteresis model and the backlash operators. A total of nine sinusoidal input voltage cases that resemble a grid of three different amplitudes excited at three different frequencies are used to train and validate the model. Three input cases are considered for training the NN architecture, connection weights, bias weights and learning rules using GA. The NN consists of three layers: an input layer that has two nodes for the amplitude and the frequency of the input voltage, an output layer that has seven nodes for the backlash, hysteresis, and damping operators, and a hidden layer that is free to have any number of nodes between two and nine. The GA constantly performs natural selection of chromosomes that propagate best compilation of NN parameters. Simulation results show that the proposed model can predict the damping, hysteresis and backlash of the smart fin–actuator system under various operational conditions.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In