Full Content is available to subscribers

Subscribe/Learn More  >

Discrete Characterization of Cohesion in Gas-Solid Flows

[+] Author Affiliations
Kunal Jain, J. J. McCarthy

University of Pittsburgh, Pittsburgh, PA

Paper No. IMECE2002-32491, pp. 141-147; 7 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics and Biomedical Technology
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-3627-4 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


Cohesive forces between grains can arise from a variety of sources – such as liquid bridge (capillary) forces, van der Waals forces, or electrostatic forces – and may play a significant role in the processing of fine and/or moist powders. While recent advances have been made in our understanding of liquid-induced cohesion at the macroscopic level, in general, it is still not possible to directly connect this macroscopic understanding of cohesion with a microscopic picture of the particle properties and interaction forces. In fact, conventional theories make no attempt to distinguish between these modes of cohesion, despite clear qualitative differences (lubrication forces in wet systems or electrostatic repulsion are two good examples). In this work, we discuss several discrete characterization tools for wet (cohesive) granular material with simple, physically relevant interpretations. We examine the utility of these tools, both computationally and experimentally, by exploring a range of cohesive strengths (from cohesionless to cohesive) in several prototypical applications of solid and gas-solid flows.

Copyright © 2002 by ASME
Topics: Flow (Dynamics)



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In