Full Content is available to subscribers

Subscribe/Learn More  >

Cohesive Finite Element Based Modeling of Damage in Composite Materials

[+] Author Affiliations
Rajesh S. Kumar

Georgia Institute of Technology, Atlanta, GA

Ramesh Talreja

Texas A&M University, College Station, TX

Paper No. IMECE2002-33575, pp. 11-19; 9 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics and Biomedical Technology
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-3627-4 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


Damage in composite laminates affects its overall viscoelastic response. Constitutive equations have been developed for composite laminates considering a fixed damage state. A complete description, however, requires suitable damage evolution laws. This paper is focused on studying damage evolution in viscoelastic laminates using a cohesive finite element approach. A two dimensional, four nodded finite element is developed incorporating a rate-independent traction-displacement cohesive law. This element is used in conjunction with plane strain bulk elements behaving in a linear viscoelastic manner to simulate crack evolution between two existing transverse cracks in symmetric cross-ply laminates. The effects of loading strain-rate, ply constraint and initial crack density are studied. This study shows expected trends in the behavior and indicates the suitability of cohesive zone modeling to study damage evolution in viscoelastic composite materials.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In