Full Content is available to subscribers

Subscribe/Learn More  >

Structures and Characterization of Organoclay-Epoxy-Vinylester Nanocomposites

[+] Author Affiliations
Farzana Hussain, Derrick Dean

Tuskegee University, Tuskegee, AL

Anwarul Haque

University of Alabama, Tuscaloosa, AL

Paper No. IMECE2002-33552, pp. 1-8; 8 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics and Biomedical Technology
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-3627-4 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


The field of polymer-clay nanocomposites has attracted considerable attention as a method of enhancing polymer properties and extending their utility. Layered silicates dispersed as a reinforcing phase in a polymer matrix are one of the most important forms of such inorganic-organic nanocomposites, making them the subject of intense research. We have recently prepared several thermoset-based nanocomposites with improved thermal and mechanical properties. This paper is primarily focused in studying the effects of nano clay particles such as montmorillonite on improving mechanical and thermal properties of the polymer matrix composite. Epoxy and vinyl ester nanocomposites were prepared by adding different weight percentages (0.5%, 1%, 2%, 5% and 10%) of montmorillonite nano clay particles to epoxy and vinyl ester matrices. The results show significant improvements in mechanical and thermal properties of the nanostructured materials with low loading of organo silicates. Thermal property measurement includes dynamic mechanical analysis (DMA). Mechanical properties such as flexural strength and flexural modulus of polymer matrix were improved in nano structured materials owing to their unique phase morphology and improved interfacial interactions. Molecular dispersion of the layered silicate within the cross-linked matrix was verified using Wide Angle X-Ray Diffraction (WAXD) and Transmission Electron Microscopy (TEM) revealing the intercalated nanocomposites were formed.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In