Abstract

This paper provides design and performance data for two envisaged year-2050 engines: a geared high bypass turbofan for intercontinental missions and a contra-rotating pusher open rotor targeting short to medium range aircraft. It defines component performance and cycle parameters, general arrangements, sizes, and weights. Reduced thrust requirements reflect expected improvements in engine and airframe technologies. Advanced simulation platforms have been developed to model the engines and details of individual components. The engines are optimized and compared with “baseline” year-2000 turbofans and an anticipated year-2025 open rotor to quantify the relative fuel-burn benefits. A preliminary scaling with year-2050 “reference” engines, highlights tradeoffs between reduced specific fuel consumption (SFC) and increased engine weight and diameter. These parameters are converted into mission fuel burn variations using linear and nonlinear trade factors (NLTF). The final turbofan has an optimized design-point bypass ratio (BPR) of 16.8, and a maximum overall pressure ratio (OPR) of 75.4, for a 31.5% TOC thrust reduction and a 46% mission fuel burn reduction per passenger kilometer compared to the respective “baseline” engine–aircraft combination. The open rotor SFC is 9.5% less than the year-2025 open rotor and 39% less than the year-2000 turbofan, while the TOC thrust increases by 8% versus the 2025 open rotor, due to assumed increase in passenger capacity. Combined with airframe improvements, the final open rotor-powered aircraft has a 59% fuel-burn reduction per passenger kilometer relative to its baseline.

References

References
1.
Statista, 2019, “Leading Airlines Worldwide in 2018, by Passenger Kilometers Flown”, Statista.com
, Hamburg, Germany, accessed Jan. 15, 2019, https://www.statista.com/statistics/270986/airlines-by-passenger-kilometers-flown
2.
ICAO
, 2017, “State of Global Air Transport and ICAO Forecasts for Effective Planning,” ICAO Economic Development Air Transport Bureau, 10th ICAO Air Services Negotiation Event, Colombo, Sri Lanka, accessed Jan. 15, 2019, https://www.icao.int/Meetings/ICAN2017/Documents/ICAO%20Workshop%20-%20State%20of%20Industry%20and%20ICAO%20Forecasts.pdf
3.
Boeing,
2016
, “Current Market Outlook 2016-2035”, The Boeing Company, Chicago, IL, accessed Jan. 15, 2019, http://www.boeing.com/resources/boeingdotcom/commercial/about-our-market/assets/downloads/cmo_print_2016_final.pdf
4.
ACARE
,
2017
, “
Strategic Research & Innovation Agenda, Volume 1, Delivering Europe's Vision for Aviation
,” Advisory Council for Aviation Research and Innovation in Europe, Bruelles, Belgium, accessed Jan. 15, 2019, https://www.acare4europe.org/sites/acare4europe.org/files/document/ACARE-Strategic-Research-Innovation-Volume-1.pdf
5.
Reneaux
,
J.
,
2004
, “
Overview on Drag Reduction Technologies for Civil Transport Aircraft
,”
European Congress on Computational Methods in Applied Sciences and Engineering
(
ECCOMAS
2004), Jyväskylä, Finland, July 24–28. http://www.southampton.ac.uk/~nwb/lectures/AeroCFD/Other/drag-reduction-technologies-for-civil-transport-aircraft-reneaux.pdf
6.
Gundlach
,
J. F.
,
Tetrault
,
P. A.
,
Gern
,
F. H.
,
Nagshineh-Pour
,
A. H.
,
Ko
,
A.
,
Schetz
,
J. A.
,
Mason, W. H., Kapania
,
R. K.
, and
Grossman
,
B.
,
2000
, “
Conceptual Design Studies of a Strut-Braced Wing Transonic Transport
,”
J. Aircr.
,
37
(
6
), pp.
976
983
.10.2514/2.2724
7.
Bradley
,
M. K.
, and
Droney
,
C. K.
,
2011
, “
Subsonic Ultra Green Aircraft Research: Phase I Final Report
,” NASA Langley Research Center, Hampton, VI, Report No. CR-2011-216847.
8.
Liebeck
,
R. H.
,
2004
, “
Design of the Blended Wing Body Subsonic Transport
,”
J. Aircr.
,
41
(
1
), pp.
10
25
.10.2514/1.9084
9.
Felder
,
J. L.
,
Kim
,
H. D.
, and
Brown
,
G. V.
,
2009
, “
Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft
,”
AIAA
Paper No. 2009–1132.
10.
Poel
,
H. W.
, and
Malychev
,
V. V.
,
1997
, “
Hydrogen in Future Civil Aviation
,”
Int. J. Hydrogen Energy
,
22
(
10–11
), pp.
1061
1069
.10.1016/S0360-3199(95)00140-9
11.
Rolt
,
A.
, and
Kyprianidis
,
K.
,
2010
, “
Assessment of New Aeroengine Core Concepts and Technologies in the EU Framework 6 NEWAC Programme
,”
Proceeding of 27th Congress of the International Council of the Aeronautical Sciences
, Nice, France, Sept. 19-24, pp.
2736
2746
.
12.
Gronsted
,
T.
,
Xisto
,
C.
,
Sethi
,
V.
,
Rolt
,
A.
,
Garcia Rosa
,
N.
,
Seitz
,
A.
,
Yakinthos
,
K.
,
Donnerhack
,
S.
,
Newton
,
P.
,
Tantot
,
N.
,
Schmitz
,
O.
, and
Lundbladh
,
A.
,
2016
, “
Ultra Low Emission Technology Innovations for Mid-Century Aircraft Turbine Engines
,”
ASME
Paper No. GT2016-56123.10.1115/GT2016-56123
13.
Heinemann
,
P.
, Panagiotou, P., Vratny, P., Kaiser, S., Hornung, M., and Yakinthos, K.,
2017
, “
Advanced Tube and Wing Aircraft for Year 2050 Timeframe
,”
AIAA
Paper No. 2017–1390.10.2514/6.2017-1390
14.
Alexiou
,
A.
, and
Tsalavoutas
,
T.
,
2011
,
Introduction to Gas Turbine Modelling With PROOSIS—First Edition
,
Empresarios Agrupados International
,
Madrid, Spain
.
15.
Rolls-Royce
,
2016
, “
Rolls-Royce Trent 700 Poster
,” Rolls Royce plc., Derby, UK, accessed Jan. 15, 2019, https://www.rolls-royce.com/∼/media/Files/R/Rolls-Royce/documents/civil-aerospace-downloads/High-Res-posters/High-Res-poster-Trent-700.pdf
16.
EASA
,
2018
, “
Type-Certificate Data Sheet No. E.067 for CFM56-5 Series Engines
,” EASA, Cologne, Germany, accessed Jan. 15, 2019, https://www.easa.europa.eu/sites/default/files/dfu/EASA%20TCDS%20E.067_issue%2002_20180417.pdf
17.
Rolt
,
A.
,
Sethi
,
V.
,
Jacob
,
F.
,
Sebastiampillai
,
J.
,
Xisto
,
C.
,
Grönstedt
,
T.
, and
Raffaelli
,
L.
,
2017
, “
Scale Effects on Conventional and Intercooled Turbofan Engine Performance
,”
Aeronaut. J.
,
121
(
1242
), pp.
1162
1185
.10.1017/aer.2017.38
18.
Cumpsty
,
N. A.
,
2015
,
Jet Propulsion: A Simple Guide to the Aerodynamic and Thermodynamic Design and Performance of Jet Engines
, 3th ed.,
Cambridge University Press
,
Cambridge, UK
.
19.
Cornell
,
W. G.
,
1975
, “
Experimental Quiet Engine Program—Summary Report
,” NASA Lewis Research Center, Cleveland, OH, Report No. CR-2519.
20.
Converse
,
G. L.
, and
Griffin
,
R. G.
,
1984
, “
Extended Parametric Representation of Compressor Fans and Turbines—Volume 1
,” NASA Lewis Research Center, Cleveland, OH, Report No. CR-174645.
21.
Plencer
,
R. M.
,
1989
, “
Plotting Component Maps in the Navy/NASA Engine Program (NNEP)—A Method and Its Usage
,” NASA Lewis Research Center, Cleveland, OH, Report No. TM-101433.
22.
Stabe
,
R. G.
,
Whitney
,
W. J.
, and
T. P. Mofitt
,
T. P.
,
1984
, “
Performance of a High-Work Low Aspect Ratio Turbine Tested With a Realistic Inlet Radial Temperature Profile
,”
AIAA
Paper No. 84-1161. 10.2514/6.84-1161
23.
Serovy
,
G. K.
,
1976
,
Compressor and Turbine Prediction System Development—Lessons From Thirty Years of History
, AGARD Lecture Series, AGARD, Neilly-sur-Seine, France.
24.
ANSI, and AGMA
,
2006
,
Design Manual for Enclosed Epicyclic Gear Drives
,
American Gear Manufacturers Association
, Standard No. ANSI/AGMA 613-B06.
25.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
, 2nd ed.,
Blackwell Publishing
,
Oxford, UK
.
26.
Heinemann
,
P.
, and
Kaiser
,
S.
,
2016
, “
ULTIMATE MS2: Advanced Tube and Wing Trade Factors Provided to WP1
,”.
27.
Kyprianidis
,
K.
, and
Rolt
,
A.
,
2014
, “
On the Optimisation of a Geared Fan Intercooled Core Engine Design
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041201
.10.1115/1.4028544
28.
Parker
,
R.
,
2014
, “
Large Civil Aircraft Engines for the Future—Evolution and Revolution
,” ICAS Conference, St. Petersburg, Russia, Sept. 9, Paper No. ICAS-201-0.2.
29.
Newton
,
P.
, Tantot, N., Donnerhack, S., and Lundbladh, A.,
2015
, “
ULTIMATE D1.1—Establish Common Year 2050 Technology Level Assumptions
,”.
30.
Laban
,
M.
,
Kok
,
J. C.
, and
Prananta
,
B. B.
,
2010
, “
Numerical Tools for Contra-Rotating Open Rotor Performance, Noise and Vibration Assessment
,”
Proceedings of 27th Congress International Council of the Aeronautical Sciences
, Nice, France, Sept. 19–24, Paper No. 2010-4.4.2.
31.
Wald
,
Q. R.
,
2006
, “
The Aerodynamics of Propellers
,”
Prog. Aerosp. Sci.
,
42
(
2
), pp.
85
128
.10.1016/j.paerosci.2006.04.001
32.
Gur
,
O.
, and
Rosen
,
A.
,
2008
, “
Comparison Between Blade-Element Models of Propellers
,”
Aeronaut. J.
,
112
(
1138
), pp.
689
704
.10.1017/S0001924000002669
33.
Egolf
,
T. A.
, Anderson, O. L., Edwards, D. E., and Landgrebe, A. J.,
1988
, “
An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction, Volume I—Theory and Application
,” NASA Lewis Research Center, Cleveland, OH, Report No. CR-4199.
34.
Korkan
,
K. D.
,
Gregorek
,
G. M.
, and
Mikkelson
,
D. C.
,
1980
, “
A Theoretical and Experimental Investigation of Propeller Performance Methodologies
,”
AIAA
Paper No. 80–1240.10.2514/6.1980-1240
35.
Bocci
,
A. J.
, and
Morrison
,
J. I.
,
1985
, “
A Review of ARA Research Into Propeller Aerodynamic Prediction Methods
,”
AGARD Conference Proceedings No. 366, Aerodynamics and Acoustics of Propellers
, Section I, Paper 5, Toronto, ON, Canada, pp. 1–19.
36.
Bellocq
,
P.
,
2012
, “
Multi-Disciplinary Preliminary Design Assessments of Pusher Counter-Rotating Open Rotors for Civil Aviation
,” Ph.D. thesis, Cranfield University, Cranfield, UK.
37.
Nelson
,
W. C.
,
1944
,
Airplane Propeller Principles
,
Wiley
,
New York
.
38.
Chandrasekaran
,
B.
,
1985
, “
Method for the Prediction of the Installation Aerodynamics of a Propfan at Subsonic Speeds
,” NASA Langley Research Center, Hampton, VI, Report No. CR-3887.
39.
Lock
,
C. N. H.
,
1941
, “
Interference Velocity for a Close Pair of Contra-Rotating Airscrews
,” Aeronautical Research Council Reports and Memoranda, London, UK, Report No. 2084.
40.
Denner
,
B. W.
, and
Korkan
,
K. D.
,
1990
, “
An Approximation Model for the Performance and Acoustic Predictions of Counter Rotating Propeller Configurations
,”
AIAA
Paper No. 90–0282.10.2514/6.1990-282
41.
Playle
,
S. C.
,
Korkan
,
K. D.
, and
Von Lavante
,
E.
,
1986
, “
A Numerical Method for the Design and Analysis of Counter-Rotating Propellers
,”
J. Propul.
,
2
(
1
), pp.
57
63
.10.2514/3.22845
42.
Ginzel
,
F.
,
1949
, “
Calculation of Counterrotating Propellers
,” NACA, Washington, DC, Report No. TM-1208.
43.
Davidson
,
R. E.
,
1981
, “
Optimization and Performance Calculation of Dual Rotation Propellers
,” NASA Langley Research Center, Hampton, VI, Report No. TP-1948.
44.
Naiman
,
I.
,
1943
, “
Method of Calculating Performance of Dual-Rotating Propellers From Airfoil Characteristics
,” NACA, Washington, DC, Report No. WR-L-330.
45.
Mikkelson
,
D. C.
,
Mitchell
,
G. A.
, and
Bober
,
L. J.
,
1984
, “
Summary of Recent NASA Propeller Research
,” NASA Lewis Research Center, Cleveland, OH, Report No. TM-83733.
46.
Sinnige
,
T.
, and
Veldhuis
,
L. L.
,
2014
, “
Pylon Trailing Edge Blowing Effects on the Performance and Noise Production of a Pusher Propeller
,”
AIAA
Paper No. 2014–0566.10.2514/6.2014-0566
47.
Gentry
,
G. L.
,
Booth
,
E. R.
, and
Takallu
,
M. A.
,
1990
, “
Effect of Pylon Wake With and Without Pylon Blowing on Propeller Thrust
,” NASA Langley Research Center, Hampton, VI, Report No. TM-4162.
48.
Lynwander
,
P.
,
1983
,
Gear Drive Systems: Design and Application
,
CRC Press
,
Boca Raton, FL
.
49.
Dooner
,
D. B.
,
2012
,
Kinematic Geometry of Gearing
, 2nd ed.,
Wiley
,
New York
.
50.
Dominy
,
J.
,
1987
, “
Transmission Efficiency in Advanced Aerospace Powerplant
,”
AIAA
Paper No. 87-2043.
51.
Horlock
,
J. H.
,
1966
,
Axial Flow Turbines: Fluid Mechanics and Thermodynamics
,
Butterworths
,
London
.
52.
Mattingly
,
J. D.
,
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2002
,
Aircraft Engine Design
, 2nd ed.,
AIAA Education Series
,
Washington, DC
.
You do not currently have access to this content.