This paper presents a method of modeling contra-rotating turbomachinery components for engine performance simulations. The first step is to generate the performance characteristics of such components. In this study, suitably modified one-dimensional mean line codes are used. The characteristics are then converted to three-dimensional tables (maps). Compared to conventional turbomachinery component maps, the speed ratio between the two shafts is included as an additional map parameter and the torque ratio as an additional table. Dedicated component models are then developed that use these maps to simulate design and off-design operation at the component and engine levels. Using this approach, a performance model of a geared turbofan with a contra-rotating core (CRC) is created. This configuration was investigated in the context of the European program “NEW Aero-Engine Core Concepts” (NEWAC). The core consists of a seven-stage compressor and a two-stage turbine without interstage stators and with successive rotors running in the opposite direction through the introduction of a rotating outer spool. Such a configuration results in a reduced parts count, length, weight, and cost of the entire high pressure (HP) system. Additionally, the core efficiency is improved due to reduced cooling air flow requirements. The model is then coupled to an aircraft performance model and a typical mission is carried out. The results are compared against those of a similar configuration employing a conventional core and identical design point performance. For the given aircraft-mission combination and assuming a 10% engine weight saving when using the CRC arrangement over the conventional one, a total fuel burn reduction of 1.1% is predicted.

References

References
1.
Korsia
,
J.-J.
, and
De Spiegeleer
,
G.
, 2007, “
VITAL, An European R&D Program for Greener Aero-Engines
,”
25th Congress of International Council of the Aeronautical Sciences
, Hamburg, Germany, Sept. 3–8, 2006, Paper ICAS 2006-5.6.1, available at http://www.icas.org/ICAS_ARCHIVE_CD1998-2010/ICAS2006/PAPERS/612.PDFhttp://www.icas.org/ICAS_ARCHIVE_CD1998-2010/ICAS2006/PAPERS/612.PDF
2.
Wilfert
,
G.
,
Sieber
,
J.
,
Rolt
,
A.
,
Baker
,
N.
,
Touyeras
,
A.
, and
Colantuoni
,
S.
, 2007, “
New Environmental Friendly Aero Engine Core Concepts
,”
18th International Symposium on Air Breathing Engines (ISABE)
, Beijing China, Sept. 2–7, ISABE Paper No. 2007-1120.
4.
5.
7.
Vanderover
,
J. S.
, and
Visser
K. D.
, 2006, “
Analysis of a Contra-Rotating Propeller Driven Transport Aircraft
,” available at http://www.rcgroups.com/forums/attachment.php?attachmentid=2815700http://www.rcgroups.com/forums/attachment.php?attachmentid=2815700
8.
Strack
,
W. C.
,
Knip
,
G.
,
Weisbrich
,
A. L.
,
Godston
,
J.
, and
Bradley
,
E.
, 1990, “
Technology and Benefits of Aircraft Counter-Rotation Propellers
,” NASA Paper No. TM-82983, available at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830002859_1983002859.pdfhttp://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830002859_1983002859.pdf
9.
Sullivan
T. J.
, 1990, “
Aerodynamic Performance of a Scale-Model, Counter Rotating Unducted Fan
,”
ASME J. Turbomach.
,
112
(
4
), pp.
579
586
.
10.
Bellocq
,
P.
,
Sethi
,
V.
,
Cerasi
,
L.
,
Ahlefelder
,
S.
,
Singh
,
R.
, and
Tantot
,
N.
, 2010, “
Advanced Open Rotor Performance Modeling for Multidisciplinary Optimisation Assessments
,”
ASME
Paper No. GT2010-22963.
11.
Larsson
,
L.
,
Grönstedt
,
T.
, and
Kyprianidis
,
K.
, 2011, “
Conceptual Design and Mission Analysis for a Geared Turbofan and an Open Rotor Configuration
,”
ASME
Paper No. GT2011-46451.
12.
Hendricks
,
E. S.
, 2011, “
Development of an Open Rotor Cycle Model in NPSS Using a Multi-Design Point Approach
,”
ASME
Paper No. GT2011-46694.
13.
Young
,
R. H.
, 1951, “
Contra-Rotating Axial-Flow Fans
,”
J. Inst. Heat. Ventilat. Eng.
18
(
187
), pp.
448
477
.
14.
Wilcox
,
W. W.
, 1952, “
An Analysis of the Potentialities of a Two-Stage Counter Rotating Supersonic Compressor
,” NACA RM Paper No. E52E01.
15.
Newton
,
A. G.
, 1985, “
Aero Gas Turbine Engines for Commercial Application
,”
7th International Symposium on Air Breathing Engines
, Beijing, China, ISABE Paper No. 85-7002.
16.
Saunders
,
N. T.
, and
Glassman
,
A. J.
, 1985, “
Future Directions in Aero-Propulsion Technology
,”
7th International Symposium on Air Breathing Engines
, Beijing, China, ISABE Paper No. 85-7000.
17.
Sharma
,
P. B.
,
Jain
,
Y. P.
,
Jha
,
N. K.
, and
Khanna
,
B. B.
, 1985, “
Stalling Behaviour of a Contra-Rotating Stage
,”
7th International Symposium on Air Breathing Engines
, Beijing, China, ISABE Paper No. 85-7087.
18.
Sharma
,
P. B.
, and
Adekoya
,
A.
, 1996, “
A Review of Recent Research on Contra-Rotating Axial Flow Compressor Stage
,” ASME Paper No. 96-GT-254.
19.
Roy
,
B.
,
Ravibabu
,
K.
,
Rao
,
S.
,
Basu
,
S.
,
Raju
,
A.
, and
Murphy
P. N.
, 1992, “
Flow Studies in Ducted Twin-Rotor Contra-Rotating Axial Flow Fans
,” ASME Paper No. 92-GT-390.
20.
Kerrebrock
,
J. L.
,
Epstein
,
A. H.
,
Merchant
,
A. A.
,
Guenette
,
G. R.
,
Parker
,
D.
,
Onnee
,
J.-F.
,
Neumayer
,
F.
,
Adamczyk
,
J. J.
, and
Shabbir
,
A.
, 2006, “
Design and Test of an Aspirated Counter-Rotating Fan
,”
ASME
Paper No. GT2006-90582.
21.
Freedman
,
J. H.
, 2000, “
Design of a Multi-Spool, High-Speed, Counter-Rotating, Aspirated Compressor
,” M.S. thesis, Massachusetts Institute of Technology, Cambridge, MA.
22.
Wintucky
,
W. T.
, and
Stewart
,
W. L.
, 1958, “
Analysis of Two-Stage Counter-Rotating Turbine Efficiencies in Terms of Work and Speed Requirements
,” NACA RM Paper No. E57L05.
23.
Louis
,
J. F.
, 1985, “
Axial Flow Counter-Rotating Turbines
,” ASME Paper No. 85-GT-218.
24.
Cai
,
R.
,
Wu
W.
, and
Fang
,
G.
, 1990, “
Basic Analysis of Counter-Rotating Turbines
,” ASME Paper No. 90-GT-108.
25.
Paniagua
,
G.
,
Szokol
,
S.
,
Kato
,
H.
,
Manzini
,
G.
, and
Varvill
R.
, 2007, “
Design of a Contra-Rotating Turbine for a Hypersonic Aircraft
,” ISABE Paper No. 2007-1341.
26.
Fang
,
X. J.
,
Zhang
,
W. J.
,
Liu
,
S. Y.
,
Wang
,
P.
, and
Lv
,
S. Y.
, 2008, “
Research of a Supersonic Axial Vaneless Rotor-Rotor Turbine
,”
ASME
Paper No. GT2008-50509.
27.
Moroz
,
L.
,
Pagur
,
P.
,
Govorushchenko
,
Y.
, and
Grebennik
,
K.
, 2009, “
Comparison of Counter-Rotating and Traditional Axial Aircraft Low-Pressure Turbines Integral and Detailed Performance
,”
International Symposium on Heat Transfer in Gas Turbine System
, Antalya, Turkey, Aug. 9–14.
28.
Keith
,
B. D.
,
Basu
,
D. K.
, and
Stevens
,
C.
, 2000, “
Aerodynamic Test Results of Controlled Pressure Ratio Engine (COPE) Dual Spool Air Turbine Rotating Rig
,” ASME Paper No. 2000-GT-632.
29.
Hemmer
,
H.
,
Otten
,
T.
,
Plohr
,
M.
,
Lecht
,
M.
, and
Döpelheuer
,
A.
, 2007, “
Influence of the Bypass Ratio on Low Altitude NOx Emissions
,”
First CEAS European Air and Space Conference
, Berlin, Germany, Sept. 10–13, Paper No. CEAS-2007-137.
30.
Pascovici
,
D. S.
,
Sorato
,
S.
,
Ogaji
,
S. O. T.
, and
Pilidis
,
P.
, 2008, “
Overview of Coupling Noise Prediction for Turbofans With Engine and Aircraft Performance
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
222
(
G4
), pp.
515
529
.
31.
Grönstedt
,
T.
,
Au
,
D.
,
Kyprianidis
,
K.
, and
Ogaji
,
S.
, 2009, “
Low Pressure System Component Advancements and Its Influence on Future Turbofan Engine Emissions
,”
ASME
Paper No. GT2009-60201.
32.
Lundbladh
,
A.
,
Donnerhack
,
S.
, and
Streifinger
,
H.
, 2009, “
Future Innovative Cores for Commercial Engines
,” ISABE Paper No. 2009-1277.
33.
Yang
,
X.-H.
, and
Shan
,
P.
, 2011, “
Design of Two Counter-Rotating Fan Types and CFD Investigation of Their Aerodynamic Characteristics
,”
ASME
Paper No. GT2011-45426.
34.
Cassano
,
C. L.
, 2009, “
Design and Numerical Evaluation of a Counter-Rotating Compressor in the Absence of Boundary Layer Control: Part II
,” M.S.A.E. thesis, Embry-Riddle Aeronautical University, Daytona Beach, FL.
35.
Wang
,
H.
,
Xu
,
J.
,
Zhao
,
X.
, and
Shao
,
Q.
, 2005, “
Numerical Investigation on Performance of Vaneless Counter-Rotating Turbine
,” ISABE Paper No. 2005-1159.
36.
Ji
,
L.
,
Xiang
,
L.
,
Haibo
,
H.
, and
Xu
,
J.
, 2003, “
The Revelations From the Research About the Vaneless Counter-Rotating Turbine
,” ISABE Paper No. 2003-1040.
37.
LuCheng
,
J.
, 2007, “
Analysis of Technical Challenges in Vaneless Counter-Rotating Turbomachinery
,”
ASME
Paper No. GT2007-27617.
38.
Lieblein
,
S.
, 1960, “
Incidence and Deviation-Angle Correlation for Compressor Cascades
,”
ASME J. Basic Eng.
,
82
, pp.
575
587
.
39.
Monsarrat
,
N. T.
,
Keenan
,
M. J.
, and
Tramm
,
R. C.
, 1969, “
Design Report: Single Stage Evaluation of High Loaded, High Mach Number Compressor Stages
,” NASA Report No. CR-72562 PWA-3546, available at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690021491_1969021491.pdfhttp://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690021491_1969021491.pdf
40.
Swan
,
W. C.
, 1961, “
A Practical Method of Predicting Transonic Compressor Performance
,”
ASME J. Eng. Power
,
83
, pp.
322
330
.
41.
Koch
C. C.
, 1981, “
Stalling Pressure Rise Capability of Axial-Flow Compressor Stages
,”
ASME J. Eng. Power
,
103
, pp
645
655
.
42.
Ainley
,
D. G.
, and
Mathieson
,
G. C. R.
, 1951, “
A Method of Performance Estimation for Axial Flow Turbines
,” British ARC, R&M 2974.
43.
Jonsen
,
I. H.
, and
Bullock
,
R. O.
, eds., 1965, “
Aerodynamic Design of Axial-Flow Compressors
,” NASA SP No. 36, NASA, Washington, D.C., available at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19650013744_1965013744.pdfhttp://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19650013744_1965013744.pdf
44.
Glassman
,
A. J.
, ed., 1972, “
Turbine Design and Application
,” NASA SP No. 290, NASA, Washington, D.C, available at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950015924_1995115924.pdfhttp://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950015924_1995115924.pdf
45.
McKenzie
,
A.B.
, 1997,
Axial Flow Fans and Compressors, Aerodynamic Design and Performance
,
Ashgate Publishing Ltd.
,
Aldershot, England
.
46.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G.
,
Cohen
,
H.
, and
Straznicky
,
P. V.
, 2009,
Gas Turbine Theory
, 6th ed.,
Pearson Educational Ltd
.,
Harlow, England
.
47.
Kurzke
,
J.
, 1995, “
Advanced User-Friendly Gas Turbine Performance Calculations on a Personal Computer
,” ASME Paper No. 95-GT-147.
49.
Alexiou
,
A.
,
Baalbergen
,
E. H.
,
Kogenhop
,
O.
,
Mathioudakis
,
K.
, and
Arendsen
,
P.
, 2007, “
Advanced Capabilities for Gas Turbine Engine Performance Simulations
,”
ASME
Paper No. GT2007-27086.
50.
Alexiou
,
A.
, and
Tsalavoutas
,
A.
, 2011,
Introduction to Gas Turbine Modelling With PROOSIS
, 1st ed.,
Empresarios Agrupados Internacional (EAI) S.A.
,
Madrid, Spain
.
51.
Kurzke
,
J.
, 2002, “
Performance Modelling Methodology: Efficiency Definitions for Cooled Single and Multistage Turbines
,”
ASME
Paper No. GT2002-30497.
52.
Donnerhack
,
S.
, 2010, Advanced Product Design, MTU Aero Engines GmbH, private communication.
53.
Kelaidis
,
M.
,
Aretakis
,
N.
,
Tsalavoutas
,
A.
, and
Mathioudakis
K.
, 2009, “
Optimal Mission Analysis Accounting for Engine Aging and Emissions
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
011201
.
54.
Svoboda
,
C.
, 2000, “
Turbofan Engine Database as a Preliminary Design Tool
,”
Aircraft Des.
,
3
, pp.
17
31
.
You do not currently have access to this content.