0

ASME Conference Presenter Attendance Policy and Archival Proceedings

2018;():V001T00A001. doi:10.1115/IPACK2018-NS.
FREE TO VIEW

This online compilation of papers from the ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems (InterPACK2018) represents the archival version of the Conference Proceedings. According to ASME’s conference presenter attendance policy, if a paper is not presented at the Conference by an author of the paper, the paper will not be published in the official archival Proceedings, which are registered with the Library of Congress and are submitted for abstracting and indexing. The paper also will not be published in The ASME Digital Collection and may not be cited as a published paper.

Commentary by Dr. Valentin Fuster

Heterogeneous Integration: Micro-Systems With Diverse Functionality

2018;():V001T01A001. doi:10.1115/IPACK2018-8211.

In this study, we proposed a flexible method to realize a cylindrical tuber encapsulant layer. Firstly, patterned LED substrate with silicone-wetting and silicone-repellency surfaces was prepared by depositing low surface energy modified nanosilica particles. Secondly, coating phosphor gel onto the LED chip. Thirdly, coating the encapsulant (silicone OE6550A/B) onto the phosphor gel layer. The silicone stops spreading at the border of silicone-wetting and silicone-repellency surfaces and its final contact angle can be adjusted to any value between the contact angle of silicone-wetting and silicone-repellency surface, so it is very easy to realize dome-shape silicone layer with contact angle of ∼90°. For COB-LEDs with LED array in series, the final silicone layer geometry is similar to the cylindrical tuber. The results show that compared to the conventional flat encapsulant layer, the proposed encapsulant layer can improve the light efficiency by > 60% for pure blue light and 13.6% for white light at correlated color temperature (CCT) of ∼5500K.

Commentary by Dr. Valentin Fuster
2018;():V001T01A002. doi:10.1115/IPACK2018-8212.

Heat transport across nanostructured interfaces, such as between nanoparticles, has been of great interest for advanced thermal management. Interfacial thermal conductance, G, is central to understanding thermal heat transport between nanoparticles that have a contact point between each other as well as the surrounded medium. In this study, we show that G dominates the heat transport compared to the conduction and radiation heat transfer modes between the nanoparticles for values higher than ∼20 (MW/m2K). We also investigate the effect of radius of contact between the nanoparticles on the overall modes of heat transfer.

Commentary by Dr. Valentin Fuster
2018;():V001T01A003. doi:10.1115/IPACK2018-8226.

In this work, a low temperature method is proposed for the economical fabrication of three-dimensional (3D) ceramic substrate for Ultraviolet Light-Emitting Diodes (UV-LED) packaging. The 3D ceramic substrate using the inorganic alkali activated aluminosilicate cement paste (IAAACP) is molded by sacrificing the patterned wax mold. By controlling the viscosity, milling time, and curing temperature the of the IAAACP, the high strength 3D ceramic substrate is achieved, the corresponding shear strength reaches to 12.5MPa. After thermal shock and heat resistant test, the shear strength changed slightly, indicating the 3D ceramic substrate has excellent thermal reliability. These experimental results indicate that the prepared 3D ceramic substrate has a potential application for UV-LED packaging.

Commentary by Dr. Valentin Fuster
2018;():V001T01A004. doi:10.1115/IPACK2018-8257.

Wafer Level Chip Scale Package (WLCSP) has been a favorable packaging solution for compact portable consumer electronics. The microelectronics industry introduced Extra Low K (ELK) to enhance electric performances with the cost of diminishing mechanical reliability. The ELK itself and its interfaces are highly fragile and susceptible to fracture. ELK cracking under bumps and ELK inter layer delamination (ILD) from die corners are often observed during and after solder reflow and qualification process such as accelerated thermal cycling (ATC). In this study, the underfill selection and its fillet formation influence to the Chip Packaging Interactions (CPI) of WLCSP was investigated through an experimental technique and numerical analysis. For the experimental assessment, thermo-mechanical interactions between die corner and underfill was investigated. Digital image correlation (DIC) technique with optical microscope was utilized to quantify the deformation behavior and strains of cross-sectioned WLCSP die corner subjected to thermal loading from 25°C to 125°C. The results clearly show captured deformations of die corner area under thermal loading. For the fillet formation influence, it shows that the high underfill fillet configuration gives higher normal strain at the die corner area during thermal cycling. For the underfill selection, it clearly shows that the strain difference at corner solder during thermal cycling caused by two different type of underfill material. Finally, finite element analysis (FEA) was conducted by simulating the thermal loading applied in the experiments and validated with experimental results. Then, using the FEA analysis, parametric study for underfill material properties and fillet height were performed on the ELK reliability of WLCSP. Energy release rate of the die corner crack were obtained and used as damage indicators for die corner ELK delamination.

Topics: Packaging
Commentary by Dr. Valentin Fuster
2018;():V001T01A005. doi:10.1115/IPACK2018-8294.

In the recent years, lidless (bare) die packaging starts to appear in the high power applications with a large die size, complementing the conventional lidded packaging. Given the vast parameters’ space of the lidded vs. lidless designs, a systematic study is necessary to develop a clear and practical design recommendations. In this work, an analytical study is conducted to assess the sensitivity of the thermal spreading resistance (TSR) and the total junction-to-ambient thermal resistance (Rja) on various parameters for a typical lidded (LD) and lidless (LL) package configuration. Useful findings and design guidance are provided.

Commentary by Dr. Valentin Fuster
2018;():V001T01A006. doi:10.1115/IPACK2018-8301.

White light-emitting diodes (WLEDs) composed of blue LED chip, yellow phosphor, and red quantum dots (QDs) are considered as a potential alternative for next-generation artificial light source with their high luminous efficiency (LE) and color-rendering index (CRI). While, QDs’ poor temperature stability and the incompatibility of QDs/silicone severely hinder the wide utilization of QDs-WLEDs. To relieve this, here we proposed a separated QSNs/phosphor structure, which composed of a QSNs-on-chip layer with a yellow phosphor layer above. A silica shell was coated onto the QDs surface to solve the compatibility problem between QDs and silicone. With CRI > 92 and R9 > 90, the newly proposed QDs@silica nanoparticles (QSNs) based WLEDs present 16.7 % higher LE and lower QDs working temperature over conventional mixed type WLEDs. The reduction of QDs’ temperature can reach 11.5 °C, 21.3 °C and 30.3 °C at driving current of 80 mA, 200 mA and 300 mA, respectively.

Topics: Temperature
Commentary by Dr. Valentin Fuster
2018;():V001T01A007. doi:10.1115/IPACK2018-8337.

Thermal interface materials (TIMs), which transmit heat from semiconductor chips, are indispensable in today’s microelectronic devices. Designing superior TIMs for increasingly demanding integration requirements, especially for server-level hardware with high power density chips, remains a particularly coveted yet challenging objective. This is because achieving desired degrees of thermal-mechanical attributes (e.g. high thermal conductivity, low elastic modulus, low viscosity) poses contradictory challenges. For instance, embedding thermally conductive fillers (e.g. metallic particles) into a compliant yet considerably less conductive matrix (e.g. polymer) enhances heat transmission, however at the expense of overall compliance. This leads to extensive trial-and-error based empirical approaches for optimal material design. Specifically, high volume fraction filler loading, role of filler size distribution, mixing of various filler types are some outstanding issues that need further clarification. To that end, we first forward a generic packing algorithm with ability to simulate a variety of filler types and distributions. Secondly, by modeling the physics of heat/force flux, we predict effective thermal conductivity, elastic modulus and viscosity for various packing cases.

Commentary by Dr. Valentin Fuster
2018;():V001T01A008. doi:10.1115/IPACK2018-8345.

Creep response of joints bonded with single-layered pressure sensitive adhesives (PSAs) was investigated in this study. PSAs are becoming more and more popular in the electronic industry as bonding media because of their ease of design, fast accurate bonding, environmentally-friendly bonding and ease of reworking. Such adhesive bonds are expected to experience complex, sustained loading conditions in service; e.g. loading due to large mass components, shock, temperature, or alignment mismatch of substrates. Stress-strain behavior of PSA bonding assembly has been extensively studied through experiments and simulations, including the effects of loading conditions (loading rate and temperature), PSA configurations (thickness of adhesive and single/double-layered PSAs), and bonding substrate surface properties (substrate material and surface roughness). However, the literature regarding the creep response of PSA-bonded assemblies is lacking and there is no literature on modeling methodologies for the creep response of such bonding systems.

Similar to the stress-strain behavior of PSA-bonded assemblies, the creep response includes transitions between multiple hardening and softening phases. Experimental results indicate that the secondary creep rate can change by up to two orders of magnitude after each transition, which is too significant to ignore when estimating the creep deformation of joints bonded with this material system. The number of transitions is related to the configuration of the PSA system, i.e. the single-layered PSA has one transition while double-layers PSAs may have multiple transitions due to the additional interface(s) introduced by the carrier layer. This unique secondary creep behavior comes from the competition between hydrostatic stress relaxation and strain hardening, caused by cavitation and fibrillation processes, respectively. The total stress applied on the joint is equal to the summation of deviatoric stress and hydrostatic stress. An advanced model based on the stress-strain ‘block’ model [5–7] is developed for evaluating the creep response. This model has the capability to control the initiation and growth of cavities in the bulk of the PSA and at the interface between PSA and substrate. This model is able to capture the nonlinear visco-plastic behavior of the PSA fibrils and estimate the effects of flexible carrier layer on the transitions in creep curves. The model prediction shows reasonable agreement with experimental results in terms of the characteristic features in creep strain histories.

Topics: Pressure , Creep , Adhesives
Commentary by Dr. Valentin Fuster

Servers of the Future, IoT, and Edge to Cloud

2018;():V001T02A001. doi:10.1115/IPACK2018-8253.

The objective of this work is to introduce the application of an artificial neural network (ANN) to assist in the evaporative cooling in data centers. To achieve this task, we employ the neural network algorithms to predict weather conditions outside the data center for direct evaporative cooling (DEC) operations. The predictive analysis helps optimize the cooling control strategy for maximizing the usage of evaporative cooling thereby improving the efficiency of the overall data center cooling system. A typical artificial neural network architecture is dynamic in nature and can perform adaptive learning in minimal computation time. A neural network model of a data center was created using operational historical data collected from a data center cooling control system. The neural network model allows the control of the modular data center (MDC) cooling at optimum configuration in two ways. First way is that the network model minimizes time delay for switching the cooling from one mode to the other. Second way, it improves the reaction behavior of the cooling equipment if an unexpected ambient condition change should come. The data center in consideration is a test bed modular data center that comprises of information Technology (IT) racks, Direct Evaporative cooling (DEC) and Indirect Evaporative Cooling (IEC) modules; the DEC/IEC are used together or in alternative mode to cool the data center room. The facility essentially utilizes outside ambient temperature and humidity conditions that are further conditioned by the DEC and IEC to cool the electronics, a concept know as air-side economization.

Various parameters are related to the cooling system operation such as outside air temperature, IT heat load, cold aisle temperature, cold aisle humidity etc. are considered. Some of these parameters are fed into the artificial neural network as inputs and some are set as targets to train the neural network system. After the training the process is completed, certain bucket of data is tested and further used to validate the outputs for various other weather conditions. To make sure the analysis represents real world scenario, the operational data used are from real time data logged on the MDC cooling control unit. Overall, the neural network model is trained and is used to successfully predict the weather conditions and cooling control parameters. The prediction models have been demonstrated for the outputs that are static in nature (Levenberg Marquardt method) as well as the outputs that are dynamic in nature i.e., step-ahead & multistep ahead techniques.

Commentary by Dr. Valentin Fuster
2018;():V001T02A002. doi:10.1115/IPACK2018-8254.

Nowadays microelectronic packaging has become a billion dollar business. Due to the increased material and production costs per package, manufacturing yield loss in this state-of-art business is expected to be at a bare minimum which is tough to persevere in a high volume manufacturing environment. Additionally, high performance and varied power computing needs in the electronic business demands microprocessors with different form factors and complex package designs. One of the most common joint which is extensively used in such a complicated package is the polymer to metal bonding. In the latest technology products involving high package warpage, interfacial bonding has to be strong enough to withstand the dynamic warpage and high mechanical stresses associated with it and hence the reliability of polymer to metal adhesion is critical. In this paper, fundamental mechanisms related to adhesion phenomena of polymer-metal interface are proposed. Adhesive failure modes related to polymer-metal bonding and key variables influencing the bonding of silicone based polymer material to nickel electroplated on copper in an integrated circuit heat spreader assembly are experimentally studied. Factors modulating polymer to metal bonding including interfacial chemistry, surface contamination and material roughness are evaluated.

Commentary by Dr. Valentin Fuster
2018;():V001T02A003. doi:10.1115/IPACK2018-8255.

As global demand for data centers grows, so does the size and load placed on data centers, leading constraints on power and space available to the operator. Cooling power consumption is a major part of the data center energy usage. Liquid cooling technology has emerged as a viable solution in the process of optimization of the energy consumed per performance unit. In this data center rack level evaluation, 2OU (Open U) hybrid (liquid+air) cooled web servers are tested to observe the effects of warm water cooling on the server component temperatures, IT power and cooling power. The study discusses the importance of variable speed pumping in a centralized coolant configuration system.

The cooling setup includes a mini rack capable of housing up to eleven hybrid cooled web servers and two heat exchangers that exhaust the heat dissipated from the servers to the environment (the test rig data center room). The centralized configuration has two redundant pumps placed in series with heat exchanger at the rack. Each server is equipped with two passive (i.e. no active pump) cold plates for cooling the CPUs while rests of the components are air cooled. Synthetic stress load has been generated on each server using stress-testing tools. Pumps in the servers are separately powered using an external power supply. The pump speed is proportional to the voltage across the armature [1]. The pump rpm has been recorded with input voltages ranging from 11V to 17V. The servers are tested for higher inlet temperatures ranging from 25°C to 45°C which falls within the ASHRAE liquid cooled envelope W4 [2]. Variable pumping has been achieved by using different input voltages at respective inlet temperatures.

Topics: Cooling , Coolants , Water
Commentary by Dr. Valentin Fuster
2018;():V001T02A004. doi:10.1115/IPACK2018-8300.

As semiconductor device feature size scales and circuit performance increases, power dissipation and thermal management are becoming very important. Attention to thermal considerations is required throughout the chip development cycle from preliminary architecture planning to deployment on customer board and beyond. This paper describes a versatile thermal test vehicle that can be used to address these requirements. We discuss the architecture and implementation of a specially designed test-vehicle chip, followed by its operation. The programmability and flexibility of this vehicle will be highlighted. In addition, we cover other usage of this vehicle which includes modelling of chip-level thermal behavior with different floorplan, simulating thermal loads in IoT FPGA applications, cross-calibrating thermal numerical simulators with measured silicon data and evaluating the thermal impact of different package form-factor / material (such as thermal interface material) and cooling solutions.

The abovementioned chip was fabricated using 0.18um technology and assembled in a flip-chip package. The reminder of this evaluation system is a simple, inexpensive tester from which a software is run to program the chip and to measure the spatial & temporal temperature values. Measured thermal data from different use cases are presented in this paper.

Commentary by Dr. Valentin Fuster
2018;():V001T02A005. doi:10.1115/IPACK2018-8305.

The rapid growth in cloud computing, the Internet of Things (IoT), and data processing via Machine Learning (ML), have greatly increased our need for computing resources. Given this rapid growth, it is expected that data centers will consume more and more of our global energy supply. Improving their energy efficiency is therefore crucial. One of the biggest sources of energy consumption is the energy required to cool the data centers, and ensure that the servers stay within their intended operating temperature range. Indeed, about 40% of a data center’s total power consumption is for air conditioning[1].

Here, we study how the server air inlet and outlet, as well as the CPU, temperatures depend upon server loads typical of real Internet Protocol (IP) traces. The trace data used here are from Google clusters and include the times, job and task ID, as well as the number and usage of CPU cores. The resulting IT loads are distributed using standard load-balancing methods such as Round Robin (RR) and the CPU utilization method.

Experiments are conducted in the Data Center Laboratory (DCL) at the Georgia Institute of Technology to monitor the server outlet air temperature, as well as real-time CPU temperatures for servers at different heights within the rack. Server temperatures were measured by on-line temperature monitoring with Xbee, Raspberry PI, Arduino, and hot-wire anemometers. Given that the temperature response varies with server position, in part due to spatial variations in the cooling airflow over the rack inlet and the server fan speeds, a new load-balancing approach that accounts for spatially varying temperature response within a rack is tested and validated in this paper.

Commentary by Dr. Valentin Fuster
2018;():V001T02A006. doi:10.1115/IPACK2018-8334.

Given the vital rule of data center availability and since the inlet temperature of the IT equipment increase rapidly until reaching a certain threshold value after which IT starts throttling or shut down because of overheat during cooling system failure. Hence, it is especially important to understand failures and their effects. This study presented experimental investigation and analysis of a facility-level cooling system failure scenario in which chilled water interruption introduced to the data center. Quantitative instrumentation tools including wireless technology such as wireless temperature and pressure sensors were used to measure the discrete air inlet temperature and pressure differential though cold aisle enclosure, respectively. In addition, Intelligent Platform Management Interface (IPMI) and cooling system data during failure/recovery were reported. Furthermore, the IT equipment performance and response for opened and contained environments were simulated and compared. Finally, an experiment based analysis of the Ride Through Time (RTT) of servers during chilled water interruption of the cooling infrastructure presented as well. The results showed that for all three classes of servers tested during the cooling failure, CAC helped keep the server’s cooler for longer. The containment provided a barrier between the hot and cold air streams and caused slight negative pressure to build up, which allowed the servers to pull cold air from the underfloor plenum. In addition, the results show that the effect of CAC in containment solutions on the IT equipment performance and response could vary and depend on the server’s airflow, generation and hence types of servers deployed in cold aisle enclosure. Moreover, it was shown that when compared to the discrete sensors, the IPMI inlet temperature sensors underestimate the Ride Through Time (RTT) by 42% and 12% for the CAC and opened cases, respectively.

Commentary by Dr. Valentin Fuster
2018;():V001T02A007. doi:10.1115/IPACK2018-8338.

With the larger size of Ball Grid Array (BGA) solder joints, the available volume for underfilling is significantly increased. Although the size of the solder joints and package dimension governs the volume of underfill material, the larger 2nd level solder interconnects are more susceptible to thermal fatigue with certain underfills and thermal profiles.

In this study, BGA packages were underfilled with two dedicated underfill materials and two soft materials used as conformal coatings and encapsulants in electronic products. Each of the selected materials was subjected to two thermal profiles, one with low mean temperature and a second with a high mean temperature. The variation in mean cyclic temperature demonstrates the influence of temperature dependent behavior of each underfill material on the loads solder joints experience in a BGA package. Material characterization was performed on the package and underfill materials and incorporated into finite element models. The influence of underfill material glass transition temperature (Tg) was found to be a critical factor on fatigue endurance of solder interconnects. Fatigue crack orientation within solder joints were found to be aligned with axial (normal) direction for BGAs with high CTE underfill materials. Simulations determined the magnitude of axial loading associated with each underfill material properties responsible for reducing fatigue life. The results developed in this paper reveal the factors associated with reduced fatigue endurance of certain underfill materials under temperature profiles with mean temperature conditions and contribute to the development of new criteria of underfill material selection for 2nd level interconnects.

Commentary by Dr. Valentin Fuster
2018;():V001T02A008. doi:10.1115/IPACK2018-8378.

Direct evaporative cooling (DEC) is widely used in the data center cooling units to maintain the air condition inside the data centers. Often, the flow rate of the water over the wet cooling media in this DEC process is frequently varied to maintain the air condition inside the data centers based on changing weather conditions. Though the adopted method helps to control the air temperature and relative humidity, the scale formation occurs on the surface of wet cooling media due to the frequent variation of the flow rate and deposition of minerals present in the water at low flow rate values, which increases the total weight of the wet cooling media and it can lead to a wet cooling media collapse. In this paper an alternative and simplified method to control the air condition is presented. A vertically split wet cooling media is designed and tested in a commercial CFD tool to analyze the temperature and relative humidity parameters of the inlet and outlet air to the wet cooling media, in this approach the sections of the media can either be completely wet or completely dry which can potentially avoid the scale formation on the surface of the wet cooling media. In addition to the temperature and relative humidity parameters against the air flow rates, the pressure drop and cooling efficiency values for varied air flow rates are studied. The vertically split wet cooling media configurations are achieved by sectioning the media in to equal and unequal sections. In the equal configuration, media has been tested for 0%, 50% and 100% wetting conditions, and in the unequal configuration, media has been tested for 0%, 33%, 66% and 100% wetting conditions. The test results are used to emphasis the advantage of this staged wetting method and gives a possible solution to the scale formation problem on the wet cooling media during the direct evaporative cooling process in the data center.

Commentary by Dr. Valentin Fuster
2018;():V001T02A009. doi:10.1115/IPACK2018-8422.

There are various designs for segregating hot and cold air in data centers such as cold aisle containment (CAC), hot aisle containment (HAC), and chimney exhaust rack. These containment systems have different characteristics and impose various conditions on the information technology equipment (ITE). One common issue in HAC systems is the pressure buildup inside the HAC (known as backpressure). Backpressure also can be present in CAC systems in case of airflow imbalances. Hot air recirculation, limited cooling airflow rate in servers, and reversed flow through ITE with weaker fan systems (e.g. network switches) are some known consequences of backpressure. Currently there is a lack of experimental data on the interdependency between overall performance of ITE and its internal design when a backpressure is imposed on ITE. In this paper, three commercial 2-rack unit (RU) servers with different internal designs from various generations and performance levels are tested and analyzed under various environmental conditions. Smoke tests and thermal imaging are implemented to study the airflow patterns inside the tested equipment. In addition, the impact leak of hot air into ITE on the fan speed and the power consumption of ITE is studied. Furthermore, the cause of the discrepancy between measured inlet temperatures by internal intelligent platform management interface (IPMI) and external sensors is investigated. It is found that arrangement of fans, segregation of space upstream and downstream of fans, leakage paths, location of sensors of baseboard management controller (BMC) and presence of backpressure can have a significant impact on ITE power and cooling efficiency.

Commentary by Dr. Valentin Fuster
2018;():V001T02A010. doi:10.1115/IPACK2018-8432.

Fully immersion of servers in electrically nonconductive (dielectric) fluid has recently become a promising technique for minimizing cooling energy consumption in data centers. The improved thermal properties of these dielectric fluids facilitate considerable savings in both upfront and operating cost over traditional air-cooling. This technology provides an opportunity for accommodating increased power densities. It also minimizes the common operational issues of air cooling technique like overheating and temperature swing in the system, fan failures, dust, air quality, and corrosion. This paper presents various data about the thermal performance of a fully single-phase dielectric fluid immersed server over wide temperature ranges (environment temperatures) from 25°C to 55°C for prolonged periods in an environmental chamber. This work explores the effects of high temperatures on the performance of a server and other components like pump, along with potential issues associated with extreme climatic conditions. The experimental data serves as a means to determine failure criteria for the server and pump by subjecting the system to accelerated thermal aging conditions i.e. around 55°C, consequently simulating the most extreme environmental condition that the server may encounter. Connector seals are inspected for expected degradation upon temperature cycling typically at such extreme conditions. Throttling limit for the server and pump power draw for different temperatures was determined to assess pump performance. Determining the relations between component behavior and operating temperature provides an accurate measure of lifetime of a server. The scope of this paper can be expanded by reviewing the effects of low temperatures on server and component performance. Changes to various performance parameters like power draw of pump and server at the higher and the lower operating temperatures and an understanding of issues like condensation can be used to quantify upper and lower limits for pump and server performance.

Topics: Temperature
Commentary by Dr. Valentin Fuster
2018;():V001T02A011. doi:10.1115/IPACK2018-8436.

The percentage of the energy used by data centers for cooling their equipment has been on the rise. With that, there has been a necessity for exploring new and more efficient methods like airside economization, both from an engineering as well as business point of view, to contain this energy demand. Air cooling especially, free air cooling has always been the first choice for IT companies to cool their equipment. But, it has its downside as well. As per ASHRAE standard (2009b), the air which is entering the data center should be continuously filtered with MERV 11 or preferably MERV 13 filters and the air which is inside the data center should be clean as per ISO class 8. The objective of this study is to design a model data center and simulate the flow path with the help of 6sigma room analysis software. A high-density data center was modelled for both hot aisle and cold aisle containment configurations. The particles taken into consideration for modelling were spherical in shape and of diameters 0.05, 0.1 and 1 micron. The physical properties of the submicron particles have been assumed to be same as that of air. For heavier particles of 1 micron in size, the properties of dense carbon particle are chosen for simulating particulate contamination in a data center. The Computer Room Air Conditioning unit is modelled as the source for the particulate contaminants which represents contaminants entering along with free air through an air-side economizer. The data obtained from this analysis can be helpful in predicting which type of particles will be deposited at what location based on its distance from the source and weight of the particles. This can further help in reinforcing the regions with a potential to fail under particulate contamination.

Commentary by Dr. Valentin Fuster
2018;():V001T02A012. doi:10.1115/IPACK2018-8443.

This work experimentally studies the impact of facility cooling failure of a direct liquid cooling (DLC) system on the IT equipment (ITE). The facility side of a DLC system removes the heat from a secondary loop — in direct contact with the ITE — and discard it in a chiller loop or ambient. The CPU utilization and coolant set point temperature (SPT) are varied to understand the effect of failure under different operating conditions. The ITE response is studied in terms of chip temperature and power, and fan speed. It was found that failure of the facility cooling system is not hazardous to the IT operation. The rate of change in temperature after failure is low and is sufficient to turn the ITE off safely. This is attributed to the surrounding air in the data center and the thermal mass of the cooling system.

Commentary by Dr. Valentin Fuster

Structural and Physical Health Monitoring

2018;():V001T03A001. doi:10.1115/IPACK2018-8219.

Stress sensors have shown potential to provide “health monitoring” of a wide range of issues related to packaging of integrated circuits, and silicon carbide offers the advantage of much higher temperature sensor operation with application in packaged high-voltage, high-power SiC devices as well as both automotive and aerospace systems, geothermal plants, and deep well drilling, to name a few.

This paper discusses the theory and uniaxial calibration of resistive stress sensors on 4H silicon carbide (4H-SiC) and provides new theoretical descriptions for four-element resistor rosettes and van der Pauw (VDP) stress sensors. The results delineate the similarities and differences relative to those on (100) silicon: resistors on the silicon face of 4H-SiC respond to only four of the six components of the stress state; a four-element rosette design exists for measuring the in-plane stress components; two stress quantities can be measured in a temperature compensated manner. In contrast to silicon, only one combined coefficient is required for temperature compensated stress measurements. Calibration results from a single VDP device can be used to calculate the basic lateral and transverse piezoresistance coefficients for 4H-SiC material.

Experimental results are presented for lateral and transverse piezoresistive coefficients for van der Pauw structures and p- and n-type resistors. The VDP devices exhibit the expected 3.16 times higher stress sensitivity than standard resistor rosettes.

Commentary by Dr. Valentin Fuster
2018;():V001T03A002. doi:10.1115/IPACK2018-8350.

Resistor reliability rules are defined by certain electrical parameters that depend on operating temperature. As shown by Black’s Equation, a temperature change of 5°C can lead to a 30% reduction in expected lifetime [1]. The temperature rise of a resistor depends on its dimensions and thermal properties as well as those of surrounding materials that separate the resistor from the heat sink. In this study, a modified approximate model based on Schafft’s equation is developed to estimate the operating temperature and assess the reliability of BEOL microresistor structures. The additional contribution of the substrate thermal resistance is added to the model and validated through a combined approach of experimental thermal mapping and numerical modeling. The developed analytical and numerical model are validated with the experimental temperature maps and could then be used for parametrization to aid the BEOL design process.

Commentary by Dr. Valentin Fuster
2018;():V001T03A003. doi:10.1115/IPACK2018-8398.

The study of solder joint reliability is one of the priority issues in electronic packaging. Solder alloys experience a highly nonlinear material behavior when subject to thermal cycling. It is a time consuming and difficult task to study the behavior of solder joints using experimental approaches. Finite element analysis provides a more efficient way to better understand the behavior of solder joints when accurate material models are available. With the developments of FEA algorithms and computer resources, the analysis approaches used for electronic packaging assemblies have evolved from 2-dimensional to 3-dimensional analyses, with far fewer assumptions needed in the fully 3D case. In this paper, we compare different FEA approaches covering various 2D and 3D modeling techniques to understand their advantages and drawbacks, especially as related to simulation accuracy and efficiency. Several models for a typical BGA assembly were prepared and analyzed including traditional mesh continuity models (2D slice model, 3D slice model, and 3D quarter model), as well as advanced models that employ Multi-Point Constraints (MPCs) and submodeling (global/local models). The Anand viscoplastic model was used for the solder joint material behavior in all of the FEA approaches.

For the 3D mesh continuity models, an optimal analysis approach has been proposed to achieve the best balance between the accuracy of the simulation result and numerical efficiency of the simulation. Mesh transitions were used to maintain mesh continuity between regions of different mesh densities. A best choice of load step size was also found to reduce overall simulation time. For the analysis using MPCs to to bond different meshes, two improved modeling strategies have been proposed including a suggested ratio of contacting elements and the use of multiple-MPC contact pairs to reduce overall mesh density of the FE model. An improved simulation simulation strategy using submodeling has also been developed to obtain the best compromise in the global and local models between the mesh quality and load step size. An improved geometric simplification of the solder joint for use with energy based fatigue criteria was developed. Finally, comparisons and suggestions were made for the best analysis approach when using FEA techniques to predict the behavior of solder joints in PBGA packages.

Commentary by Dr. Valentin Fuster
2018;():V001T03A004. doi:10.1115/IPACK2018-8405.

In this work, the mechanical behavior of a typical UV curable solder mask material has been explored as a function of ultra violet (UV) curing time, testing temperature, and isothermal aging exposure. Mechanical testing has been performed using standard tensile testing. For the tensile testing, a specimen preparation procedure has been developed to make 80 × 3 mm uniaxial tension test samples with a defined thickness (e.g. 0.30 mm), and both stress-strain and creep tests were performed. The solder mask test specimens were prepared in a unique way and no release agent is required to extract them from the mold. The mechanical behavior changes of the solder mask material were recorded for different curing profiles including various durations of UV exposure and subsequent isothermal curing.

The results showed that an optimum UV exposure time was critical to provide acceptable mechanical properties. In addition, the stress-strain and creep behavior of the solder mask were recorded for various temperatures from 25 to 125 °C, and the mechanical properties were found to degrade significantly at elevated temperatures as expected. The experimental results showed that variations of thermal curing profile (curing temperature and time) also change the mechanical properties significantly, so that solder masks have a very small optimum processing window. Finally, the effects of isothermal aging at 100 °C on the material behavior were characterized for different aging times. Using the recorded data, the changes in the elastic modulus, strength, and creep rate were characterized as a function of aging time. Significant variations were observed in the elastic modulus (250%) and ultimate strength (150%) of the aged samples.

Commentary by Dr. Valentin Fuster
2018;():V001T03A005. doi:10.1115/IPACK2018-8408.

Exposure of lead free solder joints to high temperature isothermal aging conditions leads to microstructure evolution, which mainly includes coarsening of the intermetallic (IMC) phases. In our previous work, it was found that the coarsening of IMCs led to degradation of the overall mechanical properties of the SAC solder composite consisting of β-Sn matrix and IMC particles. However, it is not known whether the isothermal aging changes properties of the individual β-Sn and IMC phases, which could also be affecting to the overall degradation of properties.

In this study, the aging induced variations of the mechanical properties of the β-Sn phase, and of Sn-Cu IMC particles in SAC solder joints have been explored using nanoindentation. SAC solder joints extracted from SuperBGA (SBGA) packages were aged for different time intervals (0, 1, 5, 10 days) at T = 125 °C. Nanoindentation test samples were prepared by cross sectioning the solder joints, and then molding them in epoxy and polishing them to prepare the joint surfaces for nanoindentation. Multiple β-Sn grains were identified in joints using optical polarized microscopy and IMCs were also observed. Individual β-Sn grains and IMC particles were then indented at room temperature to measure their mechanical properties (elastic modulus and hardness) and time dependent creep deformations. Properties measured at different aging time were then compared to explore aging induced degradations of the individual phases. The properties of the individual phases did not show significant degradation. Thus, IMC coarsening is the primary reason for the degradation of bulk solder joint properties, and changes of the properties of the individual phases making up the lead free solder material are negligible.

Commentary by Dr. Valentin Fuster
2018;():V001T03A006. doi:10.1115/IPACK2018-8410.

In this study, we have conducted a combined numerical and experimental study on the Poisson’s ratio of SAC lead free solders. The Poisson’s ratio (PR) is one of the basic mechanical properties used in many material constitutive models. Although often not measured, it is important property in many finite element method (FEM) calculations. The value of the Poisson’s ratio of SAC lead free solders is relatively unexplored compared to other material properties, and for FEA simulations it is typically assumed to be v = 0.3. In the current work, we have shown the effects of the chosen value of the solder joint Poisson’s ratio on the finite element results for BGA components subjected to thermal cycling. In the finite element models, the reliability predictions were based on the Morrow-Darveaux energy-based fatigue model. Several sizes (5, 10, 15 mm) of PBGA components with SAC305 solder joints with 0.4 and 0.8 mm spacing were modeled. The packages were subjected to a time dependent cyclic temperature distribution from −40 to 125 °C. The package assemblies were assumed to be in a stress-free state at 25 °C (room temperature), with no residual stresses induced in the manufacturing process. The simulation results have demonstrated that for specified range of Poisson’s ratio values of 0.15 < v < 0.40, the solder Plastic Work varied over 20% and the Predicted Reliability Varied over 50%.

To determine the actual Poisson’s ratio experimentally, uniaxial tensile stress-strain tests were carried out on SAC305 (96.5Sn3.0Ag0.5Cu) specimens using a micro tension/torsion testing machine with two strain rates (0.0001, and 0.00001 (sec−1)), four testing temperatures (T = 25, 50, 75, 100 °C), and several durations of prior aging at T = 125 °C. Deformations and strains in axial and transverse directions were measured using strain gages with automatic data acquisition from LabVIEW software. The recorded transverse strain vs. axial strain data were then fit with a linear regression analysis to determine the Poisson’s ratio values. A test matrix of experiments was developed to study the effects of temperature, strain rate, alloy composition, and solidification cooling profile on the value of solder Poisson’s ratio. The Poisson’s ratio was found to increase with increasing temperature, and decrease with increasing strain rate. Using a slower solidification cooling profile led to an increase in the solder Poisson’s ratio value. Finally, the microstructural coarsening that occurs during isothermal aging lead to an increase in the Poisson’s ratio.

Commentary by Dr. Valentin Fuster
2018;():V001T03A007. doi:10.1115/IPACK2018-8414.

Fatigue failure of solder joints is one of the most common methods by which electronic packages fail. Electronic assemblies usually must cope with a temperature varying environment. Due to the mismatches in coefficients of thermal expansion (CTEs) of the various assembly materials, the solder joints are subjected to cyclic thermal-mechanical loading during temperature cycling. The main focus of this work is to investigate the changes in microstructure that occur in SAC305 and SAC+Bi lead free solders subjected to mechanical cycling. In this paper, we report on results for the SAC+Bi solder commonly known as SAC_Q or CYCLOMAX. Uniaxial solder specimens were prepared in glass tubes, and the outside surfaces were polished. A nanoindenter was then used to mark fixed regions on the samples for subsequent microscopy evaluation. The samples were subjected to mechanical cycling, and the microstructures of the selected fixed regions were recorded after various durations of cycling using Scanning Electron Microscopy (SEM). Using the recorded images, it was observed that the cycling induced damage consisted primarily of small intergranular cracks forming along the subgrain boundaries within dendrites. These cracks continued to grow as the cycling continued, resulting in a weakening of the dendrite structure, and eventually to the formation of large transgranular cracks. The distribution and size of the intermetallic particles in the inter-dendritic regions were observed to remain essentially unchanged.

Topics: Solders
Commentary by Dr. Valentin Fuster

Power Electronics, Energy Conversion, and Storage

2018;():V001T04A001. doi:10.1115/IPACK2018-8210.

Active liquid cooling is one of the most efficient and promising strategy for extreme thermal issues. As is the power source of the active liquid cooling system, a reliable and powerful micropump is urgently needed. In this study, we numerically studied the fluid flow of a hydrodynamic levitated micropump, considering the fluid flow in the motor. We found that the load capacity of the journal bearing is not influenced by the pump fluid flow. However, the pressure distribution of the journal bearing results in the dissymmetric pressure distribution in the spiral groove bearing, leading to worse stability of the axial levitation performance. The axial suspension force is at least 1.0N with the liquid film thickness of 15μm and is sufficient for the rotor with weight of 30g to be stably levitated in the fluid. Owing to the pressure difference inside the pump, the balance point of the rotor should be lower than the theoretical design when the micropump is operating.

Commentary by Dr. Valentin Fuster
2018;():V001T04A002. doi:10.1115/IPACK2018-8225.

We proposed an all-inorganic multi-color converter based on Eu3+-doped phosphor-in-glass (PiG) for high-power white light-emitting diodes (WLEDs). The Eu3+-doped PiG was fabricated by screen-printing and low-temperature sintering a green phosphor into a Eu3+-doped glass matrix, which was prepared by a lead-free and low-melting glass frit doped with Eu3+ ions. When the Eu3+ doping content increases from 0.5 to 5 mol%, the transmittance of Eu3+-doped glass matrix is reduced while the red emission intensity is increased. In addition, with the green phosphor mass ratio of 30%, the Eu3+-doped PiG based WLEDs achieve a warm white light with a correlated color temperature (CCT) of 4496 K and a color rendering index (CRI) of 82 at the driving current of 350 mA. These results indicate that the Eu3+-doped PiG is a promising multi-color converter for high-power WLEDs.

Commentary by Dr. Valentin Fuster
2018;():V001T04A003. doi:10.1115/IPACK2018-8256.

In this paper, several methods suitable for real time on-chip temperature measurements of power AlGaN/GaN based high-electron mobility transistor (HEMT) grown on SiC substrate are presented. The measurement of temperature distribution on HEMT surface using Raman spectroscopy is presented. We have deployed a temperature measurement approach utilizing electrical I-V characteristics of the neighboring Schottky diode under different dissipated power of the transistor heat source. These methods are verified by measurements with micro thermistors. The results show that these methods have a potential for HEMT analysis in thermal management. The features and limitations of the proposed methods are discussed. The thermal parameters of materials used in the device are extracted from temperature distribution in the structure with the support of 3-D device thermal simulation. The thermal analysis of the multifinger power HEMT is performed. The effects of the structure design and fabrication processes from semiconductor layers, metallization, and packaging up to cooling solutions are investigated. The analysis of thermal behavior can help during design and optimization of power HEMT.

Commentary by Dr. Valentin Fuster
2018;():V001T04A004. doi:10.1115/IPACK2018-8262.

This paper firstly reviews the failure causes, modes and mechanisms of two major types of capacitors used in power electronic systems — metallized film capacitors and electrolytic capacitors. The degradation modeling related to these capacitors is then presented. Both physics-of-failure and data-driven degradation models for reliability and lifetime estimation are discussed. Based on the exhaustive literature review on degradation modeling of capacitors, we provide a critical assessment and future research directions.

Topics: Modeling , Capacitors
Commentary by Dr. Valentin Fuster
2018;():V001T04A005. doi:10.1115/IPACK2018-8275.

Flip chip (FC) packaging techniques in modern power electronics have enabled increased power density in module performance, but mechanical stresses induced by thermal expansion during inherent operating conditions in the power devices and packages create a need for understanding thermomechanical fatigue mechanisms that lead to reliability concerns. Moreover, in actual use, these mechanical stresses impact the reliable lifetime alongside thermal factors (such as diffusion and microstructural transformation) and other process history effects. This amalgam of damage inducing phenomena make development of a concise association between damage, fatigue, and stress factors difficult to determine. For reliability demonstration under fatigue loading, accelerated life testing (ALT), such as Thermal Cycling (TC), are commonly used in industry; however, long duration and expensive equipment required for TC limit its utility, especially when considering the high cost of wide-bandgap devices and modules, and the limitation of high temperature (> 150°C) testing standards. As a result, alternative test methodologies are needed to provide faster, cheaper, and design integrable reliability determination. In this work, an accelerated test methodology is introduced and designed to simulate these mechanical stresses at isothermal conditions, which is demonstrated using test chips that are analogous to power devices. By stressing these devices in a controlled environment, mechanical stresses become de-coupled from the design and temperature, such that useful lifetimes can be predictable. Mechanical shear stress was cyclically applied directly to device-relevant, flip-chip solder interconnects while monitoring cycles-to-failure (CTF).

Also, Finite Element Analysis (FEA) is used to extract various damage metrics of different solder materials (including PbSn37/63, SAC305 and Nano-silver) in both thermal operation and the introduced alternative mechanical testing conditions. In doing so, test protocol translations to common qualification tests (or use condition thermal profiles) can be determined and are validated using the mechanical shear stress testing method. Plastic work density and maximum shear were calculated in the critical solder interconnects for different isothermal mechanical testing temperatures (22°C, 75°C, 100°C and 125°C) and the results are compared with the simulation results of different TC test conditions. This reliability determination with failure parameter isolation allows for improved integration with FEA modeling for a priori reliability prediction during the design process.

Commentary by Dr. Valentin Fuster
2018;():V001T04A006. doi:10.1115/IPACK2018-8276.

Sintered silver-based bonded interfaces are a critical enabling technology for high-temperature, compact, high-performance, and reliable wide-bandgap packages and components. High-pressure (∼40 MPa) sintered silver interfaces have been implemented commercially, most notably the commercial products offered by Semikron. To reduce manufacturing complexity, there is significant industry interest in pressure-less sintered silver interfaces. To this end, current formulations of sintered silver paste are comprised of purely nano-sized silver particles or a combination of nano- and micro-sized silver particles/flakes. It is essential to quantify the mechanical properties and determine the reliability of these interfaces prior to use in automotive power electronics applications. In this paper, research efforts at the National Renewable Energy Laboratory, in collaboration with Virginia Polytechnic Institute and State University and an industry partner, in optimizing the synthesis procedure and mechanical characterization of sintered silver double-lap samples are described. These double-lap samples were synthesized using pressure-less sintering techniques. Shear testing was conducted at multiple temperatures and displacement rates on these samples sintered using two types of sintered sintered silver pastes, one of them consisting of nano-silver particles and the other a hybrid paste or a combination of nano- and micron-sized silver flakes, employed in a double-lap configuration. Maximum values of shear stress obtained from the characterization study are reported.

Topics: Silver
Commentary by Dr. Valentin Fuster
2018;():V001T04A007. doi:10.1115/IPACK2018-8279.

In power electronic, ceramic substrates are used owing to their high thermal conductivity and dielectric strength. These substrates cannot withstand high voltages in the range of 20kV because thickness limitations inherit from the direct bond copper manufacturing method. This manufacturing process uses high temperature in order to bond the material layers. This negatively affects the material’s reliability due to the differing materials thermal expansion coefficients and the resulting residual stress. All this results in hindering the ceramic substrate in obtaining a higher dielectric strength. In contrast, cold gas spray has the potential to provide higher reliability due to its bonding mechanism, which relies on plastic deformation of solid particles at very high strain rates during impact to create a mechanical bond, forming a thick deposit. However, cold gas spray on ceramics has not been widely studied due to their brittleness and their inability to form a metallic bond. This work is aimed at providing an effective processing parameter map of the cold gas spray process to achieve a thick copper deposit on aluminum nitride on the basis of the comparison of experimental results with a numerical model and finite element simulation formulated in Mathematica and ABAQUS, respectively.

Commentary by Dr. Valentin Fuster
2018;():V001T04A008. doi:10.1115/IPACK2018-8282.

Thermoelectric (TE) modules used in a heat pumping mode are increasingly being used for various applications involving heating and cooling. As their use becomes more prevalent and extends to lower cost applications using inexpensive commodity power supplies, it is important to characterize the long-term effects of power cycling and power quality on their performance. Two power supplies were evaluated with different levels of periodic and random deviations (PARD) from ideal DC power. This paper presents the results of an accelerated aging experimental study on intermittent power cycling of TE modules over the span of 5 actual months with each power supply. TE performance metrics that were monitored at specific time intervals are the AC resistance and figure of merit. The applied voltage, power consumption, TE hot and cold side temperatures and air temperatures were continuously measured. The experimental results indicate that the low-quality power supply quality had only a minor influence on properties and integrity of the TE modules, and is suitable for applications requiring intermittent use without a substantial reduction in performance.

Commentary by Dr. Valentin Fuster
2018;():V001T04A009. doi:10.1115/IPACK2018-8307.

Thermal Interface materials are crucial elements for packaging of power electronics. In particular, development of high temperature lead free die-attach thermal interface materials for silicon carbide wide bandgap power electronics is a challenge. Failures of power electronics package modules often occur at die-attach areas. Among major options, sintered silver shows advantages in ease of applications. Cost, reliability, and integration are concerns for technology implementation. The current study first discusses issues and status reported in literatures. Then it focuses on cost reduction and improvement of sintered silver using enhancement structures at micro and nano scales. A few design architectures are analyzed by finite element methods. The feasibility of strengthening edges and corners is also assessed. The downside of potential increase of unfavorable stresses to accelerate void coalescence would be discussed in conjunction with design concept of power electronics package modules for paths of solutions in the form of integrated module systems.

Commentary by Dr. Valentin Fuster
2018;():V001T04A010. doi:10.1115/IPACK2018-8311.

As electronic devices continue to shrink in size and increase in functionality, effective thermal management has become a critical bottleneck that hinders continued advancement. Two-phase cooling technologies are of growing interest for electronics cooling due to their high heat removal capacity and small thermal resistance (< 0.3 K-cm2/W) [1]. One typical example of a two-phase cooling method is droplet evaporation, which can provide a high heat transfer coefficient with low superheat. While droplet evaporation has been studied extensively and used in many practical cooling applications (e.g., spray cooling), the relevant work has been confined to spherical droplets with axisymmetric geometries. A rationally designed evaporation platform that yields asymmetric meniscus droplets can potentially achieve larger meniscus curvatures, which give rise to higher vapor concentration gradients along the contact line region and therefore yield higher evaporation rates. In this study, we develop a numerical model to investigate the evaporation behavior of asymmetrical microdroplets suspended on a porous micropillar structure. The equilibrium profiles and mass transport characteristics of droplets with circular, triangular, and square contact shapes are explored using the Volume of Fluid (VOF) method. The evaporative mass transport at the liquid-vapor interface is modeled using a simplified Schrage model [2]. The results show highly non-uniform mass transport characteristics for asymmetrical microdroplets, where a higher local evaporation rate is observed near the locations where the meniscus has high curvature. This phenomenon is attributed to a higher local vapor concentration gradient that drives faster vapor diffusion at more curved regions, similar to a lightning rod exhibiting a strong electric field along a highly curved surface. By using contact line confinement to artificially tune the droplet into a more curved geometry, we find the total evaporation rate from a triangular-based droplet is enhanced by 13% compared to a spherical droplet with the same perimeter and liquid-vapor interfacial area. Such a finding can guide the design and optimization of geometric features to improve evaporation in high performance electronics cooling systems.

Topics: Evaporation , Shapes
Commentary by Dr. Valentin Fuster
2018;():V001T04A011. doi:10.1115/IPACK2018-8315.

In order to study the optimal N:Al flux ratio during the deposition of AlN, the effects of N:Al flux ratio on the crystal quality (crystallinity and surface roughness) of homoepitaxial AlN are investigated. The growth temperature ranges from 1600 K to 2000 K with an increment of 200 K. When the N:Al flux ratios are changed from 0.8 to 2.8, the good crystallinity is obtained at 1600 K with the N:Al flux ratio of 2.4, while it is obtained at 1800 K with the N:Al flux ratio of 2.4 and with the N:Al flux ratio of 2.0 at 2000 K. The crystallinity at 1800 K with N:Al flux ratio of 2.4 stands out among these three. At 1800 K with varied N:Al flux ratios, the minimum surface roughness is also obtained at the N:Al flux ratio of 2.4. Further more, the distribution of deposited Al atoms at 1800 K is explored, the result shows that the uniform distribution of Al atoms appears at N:Al flux ratio of 2.4.

Commentary by Dr. Valentin Fuster
2018;():V001T04A012. doi:10.1115/IPACK2018-8322.

As modern day electronics develop, electronic devices become smaller, more powerful, and are expected to operate in more diverse configurations. However, the thermal control systems that help these devices maintain stable operation must advance as well to meet the demands. One such demand is the advent of flexible electronics for wearable technology, medical applications, and biology-inspired mechanisms. This paper presents the design and performance characteristics of a proof of concept for a flexible Electrohydrodynamic (EHD) pump, based on EHD conduction pumping technology in macro- and meso-scales. Unlike mechanical pumps, EHD conduction pumps have no moving parts, can be easily adjusted to the micro-scale, and have been shown to generate and control the flow of refrigerants for electronics cooling applications. However, these pumping devices have only been previously tested in rigid configurations unsuitable for use with flexible electronics. In this work, for the first time, the net flow generated by flexible EHD conduction pumps is measured on a flat-plane and in various bending configurations. In this behavioral characteristics study, the results show that the flexible EHD conduction pumps are capable of generating significant flow velocities in all size scales considered in this study, with and without bending. This study also proves the viability of screen printing as a manufacturing method for these pumps.

EHD conduction pumping technology shows potential for use in a wide range of terrestrial and space applications, including thermal control of rigid as well as flexible electronics, flow generation and control in micro-scale heat exchangers and other thermal devices, as well as cooling of high power electrical systems, soft robotic actuators, and medical devices.

Commentary by Dr. Valentin Fuster
2018;():V001T04A013. doi:10.1115/IPACK2018-8354.

Powering small electronics like mobile devices off-grid has remained a challenge; hence, there exists a need for an alternate source of powering these devices. This paper examines the efficacy of a novel nanoparticle-immobilized polyethylene wick in maintaining sufficient thermal gradient across a thermoelectric generator to power these devices with energy from waste heat. The work examines several other heat exchangers including heat pipes and loop heat pipe setups. The experimental evidence reveals that the nanoparticle-immobilized polyethylene wick is capable of generating sufficient thermal potential resulting in 5V, which is the minimum voltage required to power small mobile devices. In the opinion of the authors, this is the first ever recorded account of utilizing waste heat to generate enough voltage to power a mobile device. Experiment demonstrated that the nanoparticle-immobilized polyethylene wick showed over 40% thermoelectric voltage generation increment over a plain polyethylene wick and a metal wick in a loop heat pipe setup.

Commentary by Dr. Valentin Fuster
2018;():V001T04A014. doi:10.1115/IPACK2018-8355.

Many military electronic systems experience thermal transient pulses, in the sub-second range, during operation. Transient thermal solutions are being developed to address these transient pulses. In order to determine the performance of these thermal solutions, precise measurement of device junction temperature during the pulse is critical. Researchers have been patterning heaters onto chips using high temperature coefficient of resistance materials, thus allowing the use of the heater as a resistance temperature detector (RTD). For a given RTD material, in order to increase the sensitivity, a high resistance value is required; however, this equates to high voltages needed to get high heat fluxes. This work aims to design a test chip which balances between the instrumentation preferring a large resistance and the desire to maintain reasonable input voltages prompting a low resistance.

This work demonstrates a novel multi-functional thermal test chip, which consists of 25 high resistance RTDs connected in parallel. This parallel connection strikes the desired balance by allowing a small overall chip resistance while allowing probing on a much higher resistance single RTD. Furthermore, this design allows optional temperature sensing at multiple locations on the chip’s surface, the possibility to create thermal gradients by controlled powering of individual resistors at different locations on the chip’s surface, and uniform heat flux over the entire chip surface.

Commentary by Dr. Valentin Fuster
2018;():V001T04A015. doi:10.1115/IPACK2018-8383.

The high power density of emerging electronic devices is driving the transition from remote cooling, which relies on conduction and spreading, to embedded cooling, which extracts dissipated heat on-site. Two-phase microgap coolers employ the forced flow of dielectric fluids undergoing phase change in a heated channel within or between devices. Such coolers must work reliably in all orientations for a variety of applications (e.g., vehicle-based equipment), as well as in microgravity and high-g for other applications (e.g., spacecraft and aircraft). The lack of acceptable models and correlations for orientation- and gravity-independent operation has limited the use of two-phase coolers in such applications. Previous research has revealed that gravitational acceleration plays a diminishing role in establishing flow regimes and transport rates as the channel size shrinks, but there is considerable variation among the proposed microscale criteria and limited research on two-phase flows in low aspect ratio microgap channels. Reliable criteria for achieving orientation- and gravity-independent flow boiling would enable emerging systems to exploit this thermal management technique and streamline the technology development process.

As a first step toward understanding the effect of gravity on two-phase microgap flow and transport, in the present effort the authors have studied the effect of evaporator orientation and mass flux on near-saturated flow boiling of HFE7100 in a 1.01 mm tall by 13.0 mm wide by 12.7 mm long microgap channel. Orientation-independence, defined as achieving similar critical heat fluxes, heat transfer coefficients, and flow regimes across evaporator orientations, was achieved for mass fluxes of 400 kg/m2-s and greater. The present results are compared to published criteria for achieving gravity-independence.

Topics: Flow (Dynamics)
Commentary by Dr. Valentin Fuster
2018;():V001T04A016. doi:10.1115/IPACK2018-8385.

As the automotive industry shifts towards the electrification of drive trains, the efficiency of power electronics becomes more important. The use of silicon carbide (SiC) devices in power electronics has shown several benefits in efficiency, blocking voltage and high temperature operation. In addition, the ability of SiC to operate at higher frequencies due to lower switching losses can result in reduced weight and volume of the system, which also are important factors in vehicles. However, the reliability of packaged SiC devices is not yet fully assessed. Previous work has predicted that the different material properties of SiC compared to Si could have a large influence on the failure mechanisms and reliability. For example, the much higher elastic modulus of SiC compared to Si could increase strain on neighboring materials during power cycling. In this work, the failure mechanisms of packaged Si- and SiC-based power devices have been investigated following power cycling tests. The packaged devices were actively cycled in 4.5 s heating and 20 s cooling at ΔT = 60–80 K. A failure analysis using micro-focus X-ray and scanning acoustic microscopy (SAM) was carried out in order to determine the most important failure mechanisms. The results of the analysis indicate that the dominant failure mechanism is wire bond lift-off at the device chip for all of the SiC-based devices. Further analysis is required to determine the exact failure mechanisms of the analyzed Si-based devices. In addition, the SiC-based devices failed before the Si-based devices, which could be a result of the different properties of the SiC material.

Commentary by Dr. Valentin Fuster
2018;():V001T04A017. doi:10.1115/IPACK2018-8387.

A number of studies on CNT, Au and Ag solar enabled steam generation with potential application in water purification, distillation and sterilization of medical equipment. The key challenge with these nanoparticles is cost of production hence limiting its wide application for clean water production. This work for the first time, reports on activated carbon enabled steam generation hence addressing the cost limitations of metallic nanoparticles. Activated carbon has high solar absorptivity at various wavelengths of visible light under low concentration.

Experiments were carried out using activated carbon and CNT nanofluids and polyurethane membrane with immobilized activated carbon and CNT. A simulated solar light of 1 KW ∼1 Sun was used. The rate of evaporation, temporal and spatial evolution of bulk temperature in the water were monitored automatically and recorded for further data reductions. Parametric studies of the effect of nanoparticle concentration, water quality and salinity were performed. Experimental evidence showed that activated carbon has potential. We reported for the first time that optimal activated carbon concentration for maximum steam generation is 60 % vol. We also obtained a 160 % increase in steam production rate at 60 % concentration of activated carbon when compared with D.I water.

Commentary by Dr. Valentin Fuster
2018;():V001T04A018. doi:10.1115/IPACK2018-8392.

The increasing thermal demands in power electronic systems require the application of high temperature die attach materials. Transient Liquid Phase Sintered (TLPS) paste-based solder alloys have been demonstrated to effectively manage the thermal and mechanical load requirements of power modules. The microstructural features of these alloys provide interconnects with the necessary strength required to sustain high loads at high temperatures. To properly understand the influence of microstructure on mechanical behavior of these alloys, single lap shear experiments were performed on a TLPS system consisting of Copper and Tin particles (Cu-Sn). Nano-indentation measurements were performed on intermetallic phases of the TLPS, and the results obtained from lap shear testing and nano-indentation measurements are presented.

Commentary by Dr. Valentin Fuster
2018;():V001T04A019. doi:10.1115/IPACK2018-8394.

A low order fast running parametric analysis tool, ParaPower, was used to arrive at the design for a novel high voltage module. The low order model used a 3D nodal network to calculate device temperatures and thermal stresses. The model assumed heat flux generated near the top surface of each device which is then conducted through the packaging structure and removed by convection. The temperature distribution is used to calculate thermal stresses throughout the package. This co-design modeling tool, developed for rectilinear geometries, allowed a rapid evaluation of the package temperatures and CTE induced stresses throughout the design space. However, once the final design configuration was determined a detailed finite element analysis was performed to validate the design. This paper compares the results obtained using ParaPower to the FEA, demonstrating the usefulness of the parametric analysis tool. Results for both temperature and CTE induced stress are compared. Two different stress models are evaluated. One based on the more traditional planar module design, which assumes a substantial substrate or heat spreader on which the module is assembled. The other model is less restrictive, eliminating the requirement for a substrate. The FEA modeling was performed using SolidWorks beginning with a thermal analysis followed by a stress analysis based on the temperature solution. Both the values and the trends of the temperatures and stresses were evaluated. The temperature results agreed to within 3.2°C. The trends and sign of the stresses were correctly predicted, but the magnitudes were not. One of the significant advantages of ParaPower is the speed of the computation. The run time for the parametric analysis was roughly two orders of magnitude faster than the FEA. This made it possible to build the model and complete the parametric analysis of roughly 500 runs in less than a day.

Commentary by Dr. Valentin Fuster
2018;():V001T04A020. doi:10.1115/IPACK2018-8396.

Lead free solders are renowned as interconnects in electronic packaging due to their relatively high melting point, attractive mechanical properties, thermal cycling reliability, and environment friendly chemical properties. The mechanical behavior of lead free solders is highly dependent on the operating temperature. Previous investigations on mechanical characterization of lead free solders have mainly emphasized stress-strain and creep testing at temperatures up to 125 °C. However, electronic devices, sometimes, experience harsh environment applications including well drilling, geothermal energy, automotive power electronics, and aerospace engines where solders are exposed to very high temperatures from 125–200 °C. Mechanical properties of lead free solders at elevated temperatures are limited.

In this work, we have investigated the mechanical behavior SAC305 (96.5Sn-3.0Ag-0.5Cu) and SAC_Q (SAC+Bi) lead free solders at extreme high temperatures up to 200 °C. Stress-strain tests were performed on reflowed uniaxial specimens at four elevated temperatures (T = 125, 150, 175, and 200 °C). In addition, changes of the mechanical behavior of these alloys due to isothermal aging at T = 125 °C have been studied. Extreme care has been taken during specimen preparation so that the fabricated solder uniaxial test specimens accurately reflect the solder material microstructures present in actual lead free solder joints.

High temperature tensile properties of the solders including initial modulus, yield stress, and ultimate tensile strength have been compared. As expected, our results show substantial degradations of the mechanical properties of lead-free solders at higher temperatures. With prior aging, these degradations become even more significant. Comparison of the results has shown that the addition of Bi to traditional SAC alloys improves their high temperature properties and significantly reduces their aging induced degradations.

Commentary by Dr. Valentin Fuster
2018;():V001T04A021. doi:10.1115/IPACK2018-8447.

For improving the functionality and signal speed of electronic devices, electronic components have been miniaturized and an increasing number of elements have been packaged in the device. As a result there has been a steady rise in the amount of heat necessitated to be dissipated from the electronic device. Recently microchannel heat sinks have been emerged as a kind of high performance cooling scheme to meet the heat dissipation requirement of electronics packaging, In the present study an experimental study of subcooled flow boiling in a high-aspect-ratio, one-sided heating rectangular microchannel with gap depth of 0.52 mm and width of 5 mm was conducted with deionized water as the working fluid. In the experimental operations, the mass flux was varied from 200 to 400 kg/m2s and imposed heat flux from 3 to 20 W/cm2 while the fluid inlet temperature was regulated constantly at 90 °C. The boiling curves, flow pattern and onset of nucleate boiling of subcooled flow boiling were investigated through instrumental measurements and a high speed camera. It was found that the slope of the boiling curves increased sharply once the superheat needed to initiate the onset of nucleate boiling was attained, and the slope was greater for lower mass fluxes, with lower superheat required for boiling incipience. As for the visualization images, for relatively lower mass fluxes the bubbles generated were larger and not easy to depart from the vertical upward placed narrow microchannel wall, giving elongated bubbly flow and reverse backflow. The thin film evaporation mechanism dominated the entire test section due to the elongated bubbles and transient local dryout as well as rewetting occurred. Meanwhile the initiative superheat and heat flux of onset of nucleate boiling were compared with existing correlations in the literature with good agreement.

Commentary by Dr. Valentin Fuster
2018;():V001T04A022. doi:10.1115/IPACK2018-8448.

The flow field inside the heat exchangers is associated with maximum heat transfer and minimum pressure drop. Designing a compact heat exchanger and employing various techniques to enhance its overall performance has been widely investigated and still an active research field. However, few researches deal with thermal optimization. The application of elliptic tube is an effective alternative to circular tube which can reduce the pressure drop significantly. In this study, numerical simulation and optimization of variable tube ellipticity is studied at low Reynolds numbers. The three-dimensional numerical analysis and a multi-objective genetic algorithm (MOGA) with surrogate modelling is performed. Two row tubes in staggered arrangement in fin-and-tube heat exchanger is investigated for combination of various elliptic ratio (e = minor axis/major axis) and Reynolds number. Tube elliptic ratio ranges from 0.2 to 1 and Reynolds number ranges from 150 to 750. The tube perimeters are kept constant while changing the elliptic ratio.

The numerical model is derived based on continuum flow approach and steady-state conservation equations of mass, momentum and energy. The flow is assumed as incompressible and laminar due to low inlet velocity. Results are presented in the form of Colburn factor, friction factor, temperature contours and streamline contours. Results show that increasing elliptic ratio increases the friction factor due increased flow blocking area, however, the effect on the Colburn factor is not significant. Moreover, tube with lower elliptic ratio followed by higher elliptic ratio tube has better thermal-hydraulic performance.

To achieve maximum heat transfer enhancement and minimum pressure drop, the Pareto optimal strategy is adopted for which the CFD results, Artificial neural network (ANN) and MOGA are combined. The tubes elliptic ratio (0.2 ⩽ e ⩽ 1.0) and Reynolds number (150 ⩽ Re ⩽ 750) are the design variables. The objective functions include Colburn factor (j) and friction factor (f). The CFD results are input into ANN model. Once the ANN is computed and its accuracy is checked, it is then used to estimate the model responses as a function of inputs. The final trained ANN is then used to drive the MOGA to obtain the Pareto optimal solution. The optimal values of these parameters are finally presented.

Commentary by Dr. Valentin Fuster
2018;():V001T04A023. doi:10.1115/IPACK2018-8449.

With the current ozone depletion and global warming issues, it is critical to develop systems with better heat transfer performance and nontoxic refrigerants. An experimental investigation was performed to evaluate convective condensation and evaporation heat transfer characteristics using R410A at low mass fluxes. Experiments were conducted in a 12.0-mm O.D. horizontal smooth tube, and three enhanced tubes: 2EHT1 tube, 2EHT2 tube and 1EHT1 tube (O.D. 12.7 mm), with different sizes and shapes of dimple/protrusion and petal arrays.

Refrigerant inlet quality varied in this study. Single phase experiment was conducted before the two-phase flow measurement. In-tube evaporation measurements of R410A were reported for saturation temperature at 6°C with vapor quality in the range of 0.2 to 0.9, and mass flux varied from 60 to 200 kg/m2s. Condensation tests were performed at saturation temperature of 45°C, vapor quality of 0.9 to 0.2, and mass flux of 60 to 260 kg/m2s.

For evaporation with mass flux less than 200 kg/m2s, heat transfer coefficient of the 2EHT2 tube, 2EHT1 tube and 1EHT1 tube were greater than the experimental HTC (heat transfer coefficient) of smooth tube results by an average factor of 1.71, 1.69 and 1.87, respectively. Pressure drop in the 2EHT2 tube was 5% higher than the 2EHT1 tube and 1EHT1 tube. For condensation, when mass flux was less than 200 kg/m2s, the 1EHT1 tube showed obvious enhancement in heat transfer coefficient, while the pressure drop in the 1EHT1 tube was slightly 3–5% higher than that of the 2EHT1 tube and the 2EHT2 tube. In conclusion, for mass flux below 200 kg/m2s, the 1EHT1 tube presented the best heat transfer performance among others with R410A as the refrigerant.

Commentary by Dr. Valentin Fuster
2018;():V001T04A024. doi:10.1115/IPACK2018-8454.

Experimental investigation was performed to measure the evaporation heat transfer coefficients of R410A inside three three-dimensional enhanced tubes (1EHT-1, 1EHT-2 and 4LB). The inner and outer enhanced surface of the 4LB tube is composed by arrays of grooves and square pits, while 1EHT-1 tube and 1EHT-2 tube consist of longitudinal ripples and dimples of different depths. All these tubes have an inner diameter of 8.32 mm and an outer diameter of 9.52 mm. Experiment operational conditions are conducted as follows: the saturation temperature is 279 K, the vapor quality ranges from 0.2 to 0.8, and the mass flux varies from 160 kg/(m2·s) to 380 kg/(m2·s). With the mass flux increasing, the heat transfer coefficient increases accordingly. The heat transfer coefficient of 1EHT-2 is the highest of all three tubes, and that of 1EHT-1 is the lowest. The heat transfer coefficient of 4LB ranks between the 1EHT-1 and 1EHT-2 tube. The reason is that the heat transfer areas of the 1EHT-2 and 4LB tube are larger than that of 1EHT-1 and interfacial turbulence is enhanced in 1EHT-2.

Commentary by Dr. Valentin Fuster
2018;():V001T04A025. doi:10.1115/IPACK2018-8456.

Thermal management has become more important as high-performance electronics have concentrated heat loads with current cooling technologies. This motivates the implementation of new cooling solutions to dissipate high heat levels from high-performance electronics. Evaporative cooling is one of the most promising approaches for meeting these future thermal demands. Thin-film evaporation promotes heat dissipation through the phase change process with minimal conduction resistance. In this process, it is important to design surface properties and structures that can minimize meniscus thickness, increase liquid-vapor interface area, and enhance evaporation performances. In this study, we thereby investigate thin-film evaporation by employing nanotextured copper substrates for varying thermal conditions. Specifically, we visualize the liquid spreading on the nanotextured surfaces using a high-speed imaging technique to quantify evaporative heat transfer for various designs. The permeability is calculated using an enhanced wicking model to account for the evaporation effect. The mass balance measurements allow us to calculate evaporation rates. Then, we employ infrared thermography to examine two-dimensional temporal temperature profiles of the samples during the evaporative wicking with a given heat flux. The combination of time-lapse images, evaporation rate measurements, and temperature profiles will provide a comprehensive understanding of evaporation performances of textured surfaces.

Commentary by Dr. Valentin Fuster
2018;():V001T04A026. doi:10.1115/IPACK2018-8468.

As power densities in advanced electronics continue to rise, the need for high performance thermal solutions becomes increasingly important. Liquid jet impingement has been applied to cooling high power-density electronics due to its ability to dissipate large heat fluxes while maintaining an acceptable operating temperature in the device. Recently, microjets have been embedded within the device substrate, forming a compact solution that is highly scalable. Many practical questions remain, however, on whether microjet technology is ready for actual implementation. In this work, we address several important questions that impede adoption of the technology. Numerical analysis and experimental data are provided to demonstrate the tradeoff between thermal performance and driving pressure requirements through pumping analysis. Additional mechanical concerns regarding robustness to clogging and resistance to erosion are addressed through a 1000-hour extended lifetime test.

Topics: Cooling
Commentary by Dr. Valentin Fuster

Autonomous, Hybrid, and Electric Vehicles

2018;():V001T05A001. doi:10.1115/IPACK2018-8214.

For design of automotive airbag electronic control units (AB ECU), it is essential to have a validated and reliable finite element (FE) simulation model in place in order to allow already in an early design stage for the accurate prediction of the ECU’s structural vibration behavior. A “bottom-up” approach which described in the ASME guide for verification and validation (ASME V&V 10-2006) is applied for the validation of the AB ECU simulation model. The AB ECU is decomposed into different assembly level. Single printed circuit board (PCB) is the lowest elementary component level. In the PCB level simulation and validation, the influence of in-plane pre-stress on PCB’s transverse vibration characteristic has been encountered, but it has been found out that the source of the in-plane pre-stress can not be explained by classical beam/plate theory. Analysis and simulation for PCB fixation reveals that the fundamental source of the in-plane pre-stress is structure’s geometric nonlinearity.

Commentary by Dr. Valentin Fuster
2018;():V001T05A002. doi:10.1115/IPACK2018-8280.

Power output to electric traction drive systems varies over a wide range during real-world operation. As a result, the inverters, responsible for converting direct current battery (DC) to alternating current (AC) for electric motor operation, experience temperature changes that are important to consider in thermal design of the whole system, as well as implications for reliability in actual use. Because of the implications of temperature on device & system reliability, it is necessary to design appropriate thermal management systems to control their temperatures to meet product reliability goals. This study utilizes US Environmental Protection Agency standard driving schedules as case studies in how driving characteristics result in power module temperature profiles during operation for various heat removal schemes and design efficiencies. The temperature profiles obtained in this study clearly demonstrate a strong relationship between motor power output and inverter heat sink temperature. Moreover, when integrated with various degrees of road incline, the driving schedules show how road and elevation also impacts the need for various cooling technologies. This information can be integrated into use condition analyses for predicting reliability of the electronic components using reliability models developed from accelerated testing and qualifications to ensure the proper certification envelope is demonstrated for any given vehicle and environment, as well as demonstrate the effectiveness of cooling methods for determination of technical and economic feasibility.

Commentary by Dr. Valentin Fuster
2018;():V001T05A003. doi:10.1115/IPACK2018-8348.

Active power cycling is a standardized and well-established method for reliability assessment and product qualification in power electronics technologies. Repetitive pulses of load current are applied to cause cyclic thermal swings in the p-n junction and in the whole semiconductor device. They induce thermo-mechanical stresses, which ultimately leads to the typical interconnect failure in the ‘devices under test’.

However, these tests are insensitive with respect to new automotive system architectures, in which power electronics devices are exposed to additional loads besides the intrinsic thermal swings. The trends in power electronics towards miniaturization, higher power density, heterogeneous system integration, and the deployment of power electronics in harsher environments combined with longer lifetime and higher uptime requirements strongly increase the reliability demands in general and the need for more improved reliability assessment methodologies in particular. The new testing methods shall be more comprehensive and more efficient, i.e., they shall simultaneously cover the real service conditions better and reduce testing time. One promising approach is the combination of loading factors — such as the superposition of active power cycling by passive thermal cycles. Both loading factors are well-known to cause most relevant failure mechanisms in power electronics. In reality, the power electronic devices are exposed to both factors simultaneously. Hence, this load case should also be replicated in the test.

The paper will report a systematic investigation of such superimposed test schemes, which cover the case of self-heating and passive heating (from neighboring elements) of the power electronics devices under real service conditions. Typical discrete power electronics components in TO-200 packages are selected as test vehicles as they are likewise relevant for the domains of consumer or automotive electronics. The paper details the test concept and discuss the quantitative and qualitative test results.

Commentary by Dr. Valentin Fuster
2018;():V001T05A004. doi:10.1115/IPACK2018-8356.

Electronics in automotive underhood environments is used for a number of safety critical functions. Reliable continued operation of electronic safety systems without catastrophic failure is important for safe operation of the vehicle. There is need for prognostication methods, which can be integrated, with on-board sensors for assessment of accrued damage and impending failure. In this paper, leadfree electronic assemblies consisting of daisy-chained parts have been subjected to high temperature vibration at 5g and 155°C. Spectrogram has been used to identify the emergence of new low frequency components with damage progression in electronic assemblies. Principal component analysis has been used to reduce the dimensionality of large data-sets and identify patterns without the loss of features that signify damage progression and impending failure. Variance of the principal components of the instantaneous frequency has been shown to exhibit an increasing trend during the initial damage progression, attaining a maximum value and decreasing prior to failure. The unique behavior of the instantaneous frequency over the period of vibration can be used as a health-monitoring feature for identifying the impending failures in automotive electronics. Further, damage progression has been studied using Empirical Mode Decomposition (EMD) technique in order to decompose the signals into Independent Mode Functions (IMF). The IMF’s were investigated based on their kurtosis values and a reconstructed strain signal was formulated with all IMF’s greater than a kurtosis value of three. PCA analysis on the reconstructed strain signal gave better patterns that can be used for prognostication of the life of the components.

Commentary by Dr. Valentin Fuster
2018;():V001T05A005. doi:10.1115/IPACK2018-8357.

Electronics in automotive underhood and downhole drilling applications may be subjected to sustained operation at high temperature in addition to high strain-rate loads. SAC solders used for second level interconnects have been shown to experience degradation in high strain-rate mechanical properties under sustained exposure to high temperatures. Industry search for solutions for resisting the high-temperature degradation of SAC solders has focused on the addition of dopants to the alloy. In this study, a doped SAC solder called SAC-Q solder have been studied. The high strain rate mechanical properties of SAC-Q solder have been studied under elevated temperatures up to 200°C. Samples with thermal aging at 50°C for up to 6-months have been used for measurements in uniaxial tensile tests. Measurements for SAC-Q have been compared to SAC105 and SAC305 for identical test conditions and sample geometry. Data from the SAC-Q measurements has been fit to the Anand Viscoplasticity model. In order to assess the predictive power of the model, the computed Anand parameters have been used to simulate the uniaxial tensile test and the model predictions compared with experimental data. Model predictions show good correlation with experimental measurements. The presented approach extends the Anand Model to include thermal aging effects.

Commentary by Dr. Valentin Fuster
2018;():V001T05A006. doi:10.1115/IPACK2018-8358.

Wire bonding is popular first-level interconnect method used in the semiconductor device packaging. Gold (Ag) wire is often used in high-reliability applications. Typical wire diameters vary between 0.8mil to 2mil. Recent increases in the gold-price have motivated the industry to search for alternate materials candidates for use in wirebonding. Three of the leading candidates are Silver (Ag), Copper (Cu), and Palladium Coated Copper (PCC). The new material candidates are inexpensive in comparison with gold and may have better electrical, and thermal properties, which is advantageous for fine pitch-high density electronics. The transition, however, comes along with few trade-offs such as narrow process window, higher wire-hardness, increased propensity for chip-cratering, lack of reliability knowledge base of when deployed in harsh environment applications. Relationship between mechanical degradation of the wirebond and the change in electric response needs to be established for better understanding of the failure modes and their respective mechanisms. Understanding the physics of damage progression may provide insights into the process parameters for manufacture of more robust interconnects. In this paper, a detailed study of the electrical and mechanical degradation of wirebonds under high temperature exposure is presented. Four wirebond candidates (Au, Ag, Cu and PCC) bonded onto Aluminum (Al) pad were subjected to high temperature storage life until failure to study the degradation of the bond-wire interface. Same package architecture and electronic molding compound (EMC) were used for all four candidates. Detailed analysis of intermetallic (IMC) phase evolution is presented along with quantification of the phases and their evolution over time. Ball shear strength was measured after decapsulation. Measurements of shear strength, shear failure modes, and IMC composition have been correlated with the change in the electrical response. Change in shear strength and different shear failure modes for different wirebond systems are discussed in the paper.

Topics: Copper , Silver , Reliability
Commentary by Dr. Valentin Fuster
2018;():V001T05A007. doi:10.1115/IPACK2018-8368.

Penetration of electrified vehicles has increased steadily over the last decade due to unstable fuel prices, and the ability of such vehicle to offer lower cost per mile for transportation. At the same time, strict fuel emission standards continue to motivate the auto industry to invest resources on developing new technologies, which allow economically feasible electrification of vehicles and enable mass production. In electric vehicles, the electric drive system converts electrical energy into mechanical energy that powers the vehicle wheels. In this article, we present thermal model based fault detection and isolation methodology for power inverter insulated gate bipolar transistor (IGBT) modules, which play a key role in converting DC power from the battery into AC power that goes into the electric motor and drives the wheels through the transmission module. We do not propose any additional sensing capability, and make use of what is typically available in most of the production vehicles today across the industry. Results are presented from simulation studies that highlight the effectiveness of our proposed method.

Topics: Flaw detection
Commentary by Dr. Valentin Fuster
2018;():V001T05A008. doi:10.1115/IPACK2018-8379.

A DfR (Design for Reliability) approach which is systematically based on simulation, sensitivity analysis and experimental validation is applied for identifying, understanding and controlling the key factors which determine the solder joint reliability of eWLB (Embedded Wafer Level Ball Grid Array) packages that carry embedded 77 GHz dies and sit on hybrid PCB (Printed Circuit Board) stacks. The hybrid stack investigated in this work is characteristic to automotive RADAR (Radio Detection And Ranging) applications and consists of one low-loss RF (Radio Frequency) layer and several FR4 layers. In line with previous work [1], the mechanical material properties of the low-loss RF laminate material are found to be the key factor. Simulation is used to systematically screen for mechanical properties which are favorable for achieving a high solder joint reliability on the unconstrained PCBs used for standardized solder joint reliability testing. A simplified virtual assessment of PCBs constrained by the mounting in system module housings is done. Both simulation and experimental results show that RF laminate materials with low Young’s modulus are the class of materials which allows for the highest solder joint reliability for all the conditions investigated in this study.

Commentary by Dr. Valentin Fuster
2018;():V001T05A009. doi:10.1115/IPACK2018-8386.

The increasing complexity of electronics in systems used in safety critical applications, such as for example self-driving vehicles requires new methods to assure the hardware reliability of the electronic assemblies. Prognostics and Health Management (PHM) that uses a combination of data-driven and Physics-of-Failure models is a promising approach to avoid unexpected failures in the field. However, to enable PHM based partly on Physics-of-Failure models, sensor data that measures the relevant environment loads to which the electronics is subjected during its mission life are required. In this work, the feasibility to manufacture and use integrated sensors in the inner layers of a printed circuit board (PCB) as mission load indicators measuring impacts and vibrations has been investigated. A four-layered PCB was designed in which piezoelectric sensors based on polyvinylidenefluoride-co-trifluoroethylene (PVDF-TrFE) were printed on one of the laminate layers before the lamination process. Manufacturing of the PCB was followed by the assembly of components consisting of BGAs and QFN packages in a standard production reflow soldering process. Tests to ensure that the functionality of the sensor material was unaffected by the soldering process were performed. Results showed a yield of approximately 30% of the sensors after the reflow soldering process. The yield was also dependent on sensor placement and possibly shape. Optimization of the sensor design and placement is expected to bring the yield to 50 % or better. The sensors responded as expected to impact tests. Delamination areas were present in the test PCBs, which requires further investigation. The delamination does not seem to be due to the presence of embedded sensors alone but rather the result of a combination of several factors. The conclusion of this work is that it is feasible to embed piezoelectric sensors in the layers of a PCB.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In