Full Content is available to subscribers

Subscribe/Learn More  >

Vulnerability Analysis of Link-Weighted Shanghai Metrorail Transit Network

[+] Author Affiliations
Yanjie Zhang, Dongming Zhang, Hongwei Huang

Tongji University, Shanghai, China

Yalda Saadat, Bilal M. Ayyub

University of Maryland, College Park, MD

Paper No. IMECE2018-86863, pp. V013T05A057; 6 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 13: Design, Reliability, Safety, and Risk
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5218-7
  • Copyright © 2018 by ASME


With the degradation of metrorail facilities and the increase in network size, it is urgently needed to perform vulnerability assessment to ensure the safe operation of the metro system. In this paper, a link-weighted network model is proposed by considering the physical interval length between neighboring metro stations as link weight factor. Firstly, the metro network was essentially mapped into a bipartite topological diagram that consists of nodes denoting metro stations and links representing metro routes including any tunnels or bridges. After analyzing the network for its complexity level, it was revealed that the metro network topology can be appropriately constructed by using the Space L method. On this basis, multiple characteristic indexes of the network were calculated to characterize network topology structural features. We then tested the state of Shanghai metro network under different failure scenarios by removing a fraction of nodes from the network. Quantitative vulnerability analyses were conducted according to the change in the topological structure of Shanghai metro network and the change in the corresponding global network efficiency due to disruptions. Finally, both the network efficiency of link-weighted and unweighted Shanghai metro network topology were calculated and compared. This study has identified the vulnerable metro stations, which could provide support for the reasonable resource allocation of maintenance work and the decision-making in emergency treatment after failure. In order to increase the adaptability to emergencies and improve the operational efficiency, it was proposed that during the planning, construction, and operation of the metro system, the management and protection of the vulnerable stations should be given increased attention.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In