Full Content is available to subscribers

Subscribe/Learn More  >

Research on a Multi-Fidelity Surrogate Model Based Model Updating Strategy

[+] Author Affiliations
Ping Wang, Qingmiao Wang, Xin Yang, Zhenfei Zhan

Chongqing University, Chongqing, China

Paper No. IMECE2018-88421, pp. V013T05A006; 7 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 13: Design, Reliability, Safety, and Risk
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5218-7
  • Copyright © 2018 by ASME


In vehicle design modeling and simulation, surrogate model is commonly used to replace the high fidelity Finite Element (FE) model. A lot of simulation data from the high-fidelity FE model are utilized to construct an accurate surrogate model requires. However, computational time of FE model increases significantly with the growing complexities of vehicle engineering systems. In order to attain a surrogate model with satisfactory accuracy as well as acceptable computational time, this paper presents a model updated strategy based on multi-fidelity surrogate models. Based on a high-fidelity FE model and a low-fidelity FE model, an accurate multi-fidelity surrogate model is modeled. Firstly, the original full vehicle FE model is simplified to get a sub-model with acceptable accuracy, and it is able to capture the essential behaviors in the vehicle side impact simulations. Next, a primary response surface model (RSM) is built based on the simplified sub-model simulation data. Bayesian inference based bias term is modeled using the difference between the high-fidelity full vehicle FE model simulation data and the primary RSM running results. The bias is then incorporated to update the original RSM. This method can enhance the precision of surrogate model while saving computational time. A real-world side impact vehicle design case is utilized to demonstrate the validity of the proposed strategy.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In