Full Content is available to subscribers

Subscribe/Learn More  >

Calculation of Evaporation From Fukushima NPP Spent Fuel Pools

[+] Author Affiliations
Mirza M. Shah

Engineering Research Associates, Redding, CT

Paper No. IMECE2018-86561, pp. V08BT10A060; 6 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5212-5
  • Copyright © 2018 by ASME


Prediction of evaporation rates from spent fuel pools of nuclear power plants in normal and post-accident conditions is of great importance for the design of safety systems. A severe accident in 2011 Fukushima nuclear power plant caused failure of cooling systems of its spent fuel pools. The post-accident evaporation from the spent fuel pools of Fukushima units 2 and 4 is compared to a model based on analogy between heat and mass transfer which has been validated with a wide range of data from many water pools including a spent fuel pool. Calculations are done with two published estimates of fuel decay heat, one 25 % lower than the other. The model predictions are close to the evaporation using the lower estimate of decay heat. Other relevant test data are also analyzed and found in good agreement with the model.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In