0

Full Content is available to subscribers

Subscribe/Learn More  >

Array Jet Impingement Onto High Porosity Thin Metal Foams at Zero Jet-to-Foam Spacing

[+] Author Affiliations
Prashant Singh

North Carolina State University, Raleigh, NC

Mingyang Zhang, Jaideep Pandit, Roop L. Mahajan

Virginia Tech, Blacksburg, VA

Paper No. IMECE2018-87915, pp. V08BT10A020; 9 pages
doi:10.1115/IMECE2018-87915
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5212-5
  • Copyright © 2018 by ASME

abstract

Metal foams enhance heat transfer rates by providing significant increase in wetted surface area and by thermal dispersion caused by flow mixing induced by the tortuous flow paths. Further, jet impingement is also an effective method of enhancing local convective heat transfer rates. In the present study, we have carried out an experimental investigation to study the combined effect of the two thermal performance-enhancement mechanisms. To this end, we conducted a set of experiments to determine convective heat transfer rates by impinging an array of jets onto thin metal foams attached on a uniformly heated smooth aluminum plate simulating a high heat-dissipating chip. The metal foams used were high porosity aluminum foams (ε∼0.94–0.96) with pore densities of 5 ppi, 10 ppi and 20 ppi (ppi: pores per inch) with thicknesses of 19 mm, 12.7 mm and 6.35 mm, respectively. With the jet-to-foam distance (z/d) set to zero, we conducted experiments with values of jet-to-jet spacing (x/d = y/d) of 2, 3 and 5. The jet plate featured an array of 5 × 5 cylindrical jet-issuing nozzles. The normalized jet-to-jet distance was varied by changing the jet diameter and keeping the jet center-to-center distance constant. Steady state heat transfer and pressure drop experiments were carried out for Reynolds number (based on jet diameter) ranging from 2500 to 10000. We have found that array impingement on thin foams leads to a significant enhancement in heat transfer compared to normal impingement over smooth surfaces. The gain in heat transfer was greatest for the 20 ppi foam (∼2.3 to 2.8 times that for the plain surface smooth target). However, this enhancement came at a significant increase of about 2.85 times in the plenum static pressure. With the pressure drop penalty taken into consideration, the x/d = 3 jet plate for the 20 ppi foam and x/d = 2 jet plate for the 10 ppi foam were found to be the most efficient cooling designs amongst the 18 cooling designs investigated in the present study.

Copyright © 2018 by ASME
Topics: Metal foams , Porosity

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In