0

Full Content is available to subscribers

Subscribe/Learn More  >

Natural Convection Heat Transfer With Horizontal Rectangular Fin Array Using Straight Knurling Patterns on Fins: An Experimental Study

[+] Author Affiliations
R. C. Chikurde, B. S. Kothavale

MAEER’s MIT College of Engineering, Pune, India

N. K. Sane

Walchand College of Engineering, Sangli, India

Paper No. IMECE2018-86449, pp. V08BT10A007; 10 pages
doi:10.1115/IMECE2018-86449
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5212-5
  • Copyright © 2018 by ASME

abstract

Natural Convection heat transfer from horizontal rectangular fin array with various knurling patterns is studied experimentally to find the effect of varying surface roughness on the heat transfer rate. The experimental parametric study is performed to investigate the effect of knurl produced surface roughness of fin on heat transfer rate. The parameters like knurling height from base, knurling depth and fin spacing might affect the flow characteristics and hence it is investigated to find the effect on heat transfer coefficient. The knurling is usually accomplished using one or more very hard rollers that contain the reverse of the pattern to be imposed. The result of this study shows that there are some important geometric factors related to knurling affecting the design of fin arrays and also heat transfer augmentation of natural convection heat transfer is observed.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In