0

Full Content is available to subscribers

Subscribe/Learn More  >

Full Scale Testing of Pulse Jet Mixer Operating Control

[+] Author Affiliations
Leolein Moualeu, Aaron Wand, Klemme Herman, Michaela Trenidad, Bethany Springer

Bechtel National Inc., Richland, WA

Michael Hall

Bechtel National Inc., Oak Ridge, TN

Nathan McAdams

Bechtel National Inc., Reston, VA

Langdon Holton

US Department of Energy, Richland, WA

Paper No. IMECE2018-87866, pp. V007T09A053; 9 pages
doi:10.1115/IMECE2018-87866
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5210-1
  • Copyright © 2018 by ASME

abstract

A standard high-solids vessel (SHSV) concept design approach using pulse jet mixers (PJM) has been proposed by the US Department of Energy (DOE) for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) as a potential replacement for several vessels that will be used to process highly radioactive waste. To assist with the evaluation of the SHSV concept, at DOE’s direction, the WTP Project recently completed qualification testing of the SHSV PJM mixing system to verify the design. Testing of the SHSV design, conducted at full scale, was split into two phases. The first phase of testing developed PJM controls that supported all operational modes under a set of most adverse fluid conditions. The second phase of testing used the PJM operating strategy, established during the first phase, to perform qualification testing to verify that the mixing system design supports the transfer, de-inventory, throughput, and sampling functional requirements of the SHSV. The different control methods that were used to operate PJMs in simulants exhibiting Newtonian and non-Newtonian rheological properties with high solids loading are presented.

The PJM system of the SHSV uses six pulse tubes distributed in a circular array. Each pulse tube (3000 liters nominal volume) is connected to a jet pump pair (JPP) by means of an air link line. The JPP powers the PJM operation by applying a vacuum to refill the PJM (suction phase), pressurizing the PJM to discharge the pulse tube content at a target velocity (drive phase), and releasing the compressed air to allow the PJM to depressurize into a ventilation system (vent phase) designed for contaminated air. A PJM control system was developed to maximize the PJM operation and minimize potential impact to the structural integrity of the vessel. The experimental results showed effective control of the system parameters. The system response demonstrated reliable control of the drive set pressure, the drive time, and synchronization. The PJM control system design also proved robust in mobilizing settled solids.

Copyright © 2018 by ASME
Topics: Testing , Pulsejets

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In