Full Content is available to subscribers

Subscribe/Learn More  >

An Assessment of Health Hazards in Valves for Gaseous Oxygen Service: Sources and Preventive Measures

[+] Author Affiliations
Anil Kumar

Independent Author, Pune, India

Younus Sheikh

Pune University, Pune, India

Paper No. IMECE2018-86018, pp. V007T09A045; 9 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5210-1
  • Copyright © 2018 by ASME


Oxygen content in air is approximately 21% by volume. With many industrial uses, mainly in the manufacture of steel and chemicals, for metal cutting, welding ,hardening & scarfing, it is being transported as a non-liquefied gas at pressures of 138 bar (13800000 Pa) or above, also as a cryogenic fluid at pressures and temperatures below 13.8bar (1380000 Pa) & −146.5°C (126.65K). Commonly we found air separation plants produce ultra-pure oxygen (> 99.9% purity) via liquefaction of atmospheric air and separation of the oxygen by fractionation and thereby transported to the needy areas via pipelines.

The research efforts directed towards technical assessment to establish the correlations between valve construction and turbulence and solving the complications in the transported ultra-pure oxygen gas in the pipelines and through mounted valves. Hence, it is necessary to study the performance, complexities and fire hazards associated with the valves transporting it and the preventive measures to avoid any catastrophic failure in ultra-pure gaseous oxygen services. The study was conducted on two isolation valves — each of ball and globe of relative size. It was realized that velocities of the ultrapure gaseous oxygen on the impingement sites inside the valve are beyond the safe limit as recommended by European Industrial Gas Association (EIGA) [4] and various other prominent industrial gas manufacturers. Moreover, globe valve gave relatively less turbulence and velocity at initial opening of the valve. The study revealed that majority of health hazards & accidents on industrial usage of ultra-pure gaseous oxygen media are the result of the inadequate awareness of the degreasing or cleaning and optimum material selection and construction of the valve and fittings on the industrial pipeline.

Copyright © 2018 by ASME
Topics: Valves , Oxygen , Hazards



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In