Full Content is available to subscribers

Subscribe/Learn More  >

Longer Passage of Airflow in Multiple Packed-Bed Thin Tanks Versus in a Short Big Tank for Improved Thermal Storage Performance

[+] Author Affiliations
Yan Wang, Zhifeng Wang, Bei Yang, Guofeng Yuan

Institute of Electrical Engineering, Chinese Academy of Sciences (IEE-CAS), Beijing, China

Peiwen Li

University of Arizona, Tucson, AZ

Wenxun Tang

Guangdong Five Star Solar Energy Co., Ltd., Dongguan, China

Paper No. IMECE2018-86123, pp. V06BT08A046; 9 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 6B: Energy
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5208-8
  • Copyright © 2018 by ASME


A very challenging issue about solar thermal power generation is the use of a high temperature heat transfer fluid (water, oils, or molten salts) for heat transfer and thermal storage material, which may freeze at night or cold weather. When choosing air as the heat transfer fluid, the problem of freezing is eliminated. In order to increase the performance of thermal storage system which uses air as the heat transfer fluid passing through a packed bed (by ceramic spheres of Al2O3), multiple small-diameter tanks are considered to replace a single large-diameter tank with the same packed-bed volume and airflow rate in this paper. Analysis about the thermal storage performance in a short big tank and in cascade thin tanks has been made for comparison. A long passage of airflow and faster flow speed of air in the cascade thin tanks has been found significantly beneficial to thermal storage. Results about the increased thermal storage performance and increased pressure loss will be presented. Longer passage of airflow made it possible to have a longer time of high temperature of outflow air during discharging period. And faster speed of the fluid enhanced the heat transfer between air and thermal storage material. The total effective energy and thermal storage efficiency of cascade thin-tank thermal energy storage (TES) are higher. The thermal storage efficiency in the two types of thermal storage arrangement was compared for optimal design. The obtained results are of great significance to the development of using air as heat transfer fluid and rocks or ceramic spheres as the thermal storage material for thermal storage system in concentrated solar thermal power plants.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In