0

Full Content is available to subscribers

Subscribe/Learn More  >

Increasing Energy Efficiency in Vehicles by Harvesting Wasted Engine Heat

[+] Author Affiliations
Emrah Celik, Mutabe Aljaghtham

University of Miami, Miami, FL

Paper No. IMECE2018-88253, pp. V06BT08A038; 5 pages
doi:10.1115/IMECE2018-88253
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 6B: Energy
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5208-8
  • Copyright © 2018 by ASME

abstract

Nearly 75% of energy produced by fuel is eventually rejected to the environment and ultimately goes unused in terms of waste heat in motor vehicles. A promising method of reclaiming energy waste is to use thermoelectric (TE) energy harvesters which are multi-material solid-state devices that convert a thermal gradient directly into electric potential. In current automotive applications, waste heat recovery systems using TE are only limited to integration on exhaust pipes to convert hot exhaust gases into electricity. In this study, we explored the use of TE materials in the shape of a car oil pan to utilize the temperature difference of hot engine oil and cool outside air and convert this temperature gradient into electricity. In this study, we performed finite element simulations to optimize the geometry and the quantity of thermoelectric modules. This optimization was performed to achieve maximum thermoelectric power under the constraints of manufacturability. Using these optimum design parameters, we determined that 2.3 kW output power can be recovered from the flat plate oil pan and 2.6 kW from the oil pan with a single step due to the enhanced surface area. These power amounts were found to be higher than those previously obtained from thermoelectric systems integrated to exhaust pipes.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In