0

Full Content is available to subscribers

Subscribe/Learn More  >

Mitigation of Greenhouse Gas Emissions Through the Shift From Fossil Fuels to Electricity in the Mass Transport System in Guayaquil, Ecuador

[+] Author Affiliations
Angel D. Ramirez, Danilo Arcentales, Andrea Boero

Escuela Superior Politecnica del Litoral, ESPOL, Guayaquil, Ecuador

Paper No. IMECE2018-87732, pp. V06AT08A064; 7 pages
doi:10.1115/IMECE2018-87732
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 6A: Energy
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5207-1
  • Copyright © 2018 by ASME

abstract

Climate change is a serious threat to sustainability. Anthropogenic climate change is due to the accumulation of greenhouse gases (GHG) in the atmosphere beyond natural levels. Anthropogenic GHG emissions are mostly associated with carbon-dioxide (CO2) originated in the combustion of fossil fuels used for heat, power, and transportation. Globally, transportation contributes to 14% of the global GHG emissions.

The transport sector is one of the main contributors to the greenhouse gas emissions of Ecuador. In Guayaquil, the road mass transportation system comprises regular buses and the bus rapid transit (BRT) system. Electricity in Ecuador is mostly derived from hydropower, hence incurs relatively low GHG emissions along its life cycle. Therefore, electrification of transport has been seen as an opportunity for mitigation of GHG emissions.

In this study, the effect of partial replacement of the bus rapid system fleet is investigated. Feeders have been chosen as the replacement target in five different scenarios. GHG emissions from diesel-based feeders have been calculated using the GREET Fleet Footprint Calculator tool. The GHG emissions associated with the electricity used for transportation is calculated using the life cycle inventory of the electricity generation system of Ecuador. Three energy mix scenarios are used for this purpose. The 2012 mix which had 61% hydropower; the mix of 85% hydropower and the marginal electricity scenario, which supposed the extreme case when the new demand for electricity occurs during peak demand periods.

Results indicate that mitigation of GHG emissions is possible for almost all scenarios of percentage fleet replacement and all mix scenarios. Electric buses efficiency and the carbon intensity of the electricity mix are critical for GHG mitigation.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In