0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Test Rigs to Investigate Fluid Flow and Heat Transfer in a Stirling Engine Heater Head

[+] Author Affiliations
Pawan Kumar Yadav, Songgang Qiu, Koji Yanaga

West Virginia University, Morgantown, WV

Paper No. IMECE2018-86378, pp. V06AT08A010; 10 pages
doi:10.1115/IMECE2018-86378
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 6A: Energy
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5207-1
  • Copyright © 2018 by ASME

abstract

To study the fluid flow and heat transfer in a Stirling Engine Heater Head (HH), two benchtop test rigs were designed and manufactured. One is to evaluate flow loss in oscillating flow conditions and another is to evaluate heat transfer in unidirectional flow conditions. The main test section-heater head, is additively manufactured; the test section also consists of an additively manufactured regenerator and a heat rejecter. For fluid flow test rig, a linear actuator from Parker generates and maintains the oscillating flow by driving a piston in sinusoidal motion. The piston is sealed against the charged fluid using Trelleborg seals. At room temperature, by varying the charge pressure, frequency, and stroke length, multiple test conditions can be achieved. For heat transfer test rig, a Gast’s high-flow, low-pressure compressed air blower is used to deliver the flow. The data acquisition (DAQ) is comprised of National Instruments’ cDAQ and modules to measure the piston’s motion in real time, pressure with Kistler’s pressure transducers, and the temperatures with OMEGA’s thermocouples, located at both the inlet and outlet of the heater head. Presented also are the testing procedures, some expected results, and the Sage outputs that will be used to check against the measured data from the test rigs, including some preliminary results. Based on the preliminary results, pressure and position curves were sinusoidal, which is expected of oscillating motions, meaning the test rig is operating well.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In