Full Content is available to subscribers

Subscribe/Learn More  >

Vibration of Curvilinearly Stiffened Plates Using Ritz Method With Orthogonal Jacobi Polynomials

[+] Author Affiliations
Berkan Alanbay, Karanpreet Singh, Rakesh K. Kapania

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. IMECE2018-86871, pp. V04BT06A051; 14 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5204-0
  • Copyright © 2018 by ASME


This paper presents a general approach for the free vibration analysis of curvilinearly stiffened rectangular and quadrilateral plates using Ritz method employing classical orthogonal Jacobi polynomials. Both the plate and stiffeners are modeled using first-order shear deformation theory (FSDT). The displacement and rotations of the plate and a stiffener are approximated by separate sets of Jacobi polynomials. The ease of modification of the Jacobi polynomials enables the Jacobi weight function to satisfy geometric boundary conditions without loss of orthogonality. The distinctive advantage of Jacobi polynomials, over other polynomial-based trial functions, lies in that their use eliminates the well-known ill-conditioning issues when a high number of terms are used in the Ritz method; e.g., to obtain higher modes required for vibro-acoustic analysis. In this paper, numerous case studies are undertaken by considering various sets of boundary conditions. The results are verified both with the detailed Finite Element Analysis (FEA) using commercial software MSC.NASTRAN and for some cases, and with those available in the open literature for others. Convergence studies are presented for studying the effect of the number of terms used on the accuracy of the solution. The paper also discusses the effects of stiffener and plate geometric dimensions on the dynamic characteristics of the structure. The method also has an advantage of saving significant computational time during optimization of such structures as changing the placement and shape of stiffeners does not require repeated calculation of plate mass and stiffness matrices as the stiffener shapes are changed.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In