Full Content is available to subscribers

Subscribe/Learn More  >

Voltage Response of Circular Plate MEMS Resonators Under Superharmonic Resonance

[+] Author Affiliations
Martin Botello, Julio Beatriz, Dumitru I. Caruntu

University of Texas Rio Grande Valley, Edinburg, TX

Paper No. IMECE2018-87766, pp. V04BT06A023; 6 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5204-0
  • Copyright © 2018 by ASME


The superharmonic resonance of second order of microelectro-mechanical system (MEMS) circular plate resonator under electrostatic actuation is investigated. The MEMS resonator consists of a clamped circular plate suspended over a parallel ground plate under an applied Alternating Current (AC) voltage. The AC voltage is characterized as hard excitation, i.e. the magnitude is large enough, and the operating frequency is near one-fourth of the natural frequency of the resonator. Reduced Order Model (ROM), based on the Galerkin procedure, transforms the partial differential equation of motion into a system of ordinary differential equations in time using mode shapes of vibration of the circular plate resonator. Three numerical methods are used to predict the voltage-amplitude response of the MEMS plate resonator. First, the Method of Multiple Scales (MMS) is directly applied to the partial differential equation of motion which is this way transformed into zero-order and first-order problems. Second, ROM using two modes of vibration is numerical integrated using MATLAB to predict time responses, and third, the AUTO 07P software for continuation and bifurcation to predict the voltage-amplitude response. The nonlinear behavior (i.e. bifurcation and pull-in instability) of the system is attributed to the inclusion of viscous air damping and electrostatic force in the model. The influences of various parameters (i.e. detuning frequency and damping) are also investigated in this work.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In