Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Vibration Control and Energy Scavenging Using Collocated Nonlinear Energy Sinks and Piezoelectric Elements

[+] Author Affiliations
Zahra Nili Ahmadabadi

Wichita State University, Wichita, KS

Siamak Esmaeilzadeh Khadem

Tarbiat Modares University, Tehran, Iran

Paper No. IMECE2018-86299, pp. V04BT06A019; 9 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5204-0
  • Copyright © 2018 by ASME


This paper presents an optimal design for a system comprising multiple nonlinear energy sinks (NESs) and piezoelectric-based vibration energy harvesters attached to a free–free beam under shock excitation. The energy harvesters are used for scavenging vibration energy dissipated by the NESs. Grounded and ungrounded configurations are examined, and the systems parameters are optimized globally to maximize the dissipated energy by the NESs. The performance of the system was optimized using a dynamic optimization approach. Compared to the system with only one NES, using multiple NESs resulted in a more effective realization of nonlinear energy pumping particularly in the ungrounded configuration. Having multiple piezoelectic elements also increased the harvested energy in the grounded configuration relative to the system with only one piezoelectric element.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In