Full Content is available to subscribers

Subscribe/Learn More  >

Multibody Dynamics Approaches for Study on Good and Bad Whole-Body Vibrations

[+] Author Affiliations
Shanzhong (Shawn) Duan

Saint Martin’s University, Lacey, WA

Paper No. IMECE2018-88485, pp. V04BT06A018; 7 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5204-0
  • Copyright © 2018 by ASME


Whole-body vibrations (WBV) have been used for enhancing muscle strength and bone density of human bodies, training athletes and dancers, and helping people with disabling conditions and rehabilitations. On the other hand, WBV-induced occupational diseases have been reported. Researchers in automotive, farm equipment, and heavy machinery have put forward a few models for studying harmful vibrations on human bodies.

This paper will review the effects of frequencies and magnitudes of WBV on a human body. Discussion of effects of frequencies and magnitudes on a human body will provide a preliminary boundary line between good and bad whole-body vibrations. Two multibody dynamics models and associated application cases will be proposed to show how the models may be used to represent whole-body vibrations under both good and bad vibrations. Three basic vibration elements associated with whole-body vibrations of the human body are handled as follows: (1) ligaments are modeled as spring elements; (2) muscles and tendons are modeled as damping elements; (3) bones are modeled as rigid bodies with masses/inertias and connected by idealized massless joints. In such a biomechanical vibration system, the spring elements (ligaments) help hold the human body skeleton structure in a stable condition, pass spring forces and potential energy to rigid bodies (bones) for bone vibrational motions. The damping elements (muscles and tendons) play roles of a damper and absorb energy input from the whole-body vibration resource.

Based on the proposed multibody dynamics models, Kane’s method is then used to develop equations of motion. The equations will be further used for development of simulation algorithms to understand frequencies and magnitudes of both good and bad whole-body vibrations.

The models may be utilized to understand why frequencies and magnitudes of whole-body vibrations will provide benefits to human health under one situation but cause occupational diseases under another scenario.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In