0

Full Content is available to subscribers

Subscribe/Learn More  >

Identification of Vehicle Inertia Parameters: From Test Bench Design to Movement Trajectory Optimization

[+] Author Affiliations
Di Yao, Kay Büttner, Günther Prokop

Dresden University of Technology, Dresden, Germany

Paper No. IMECE2018-87545, pp. V04BT06A014; 9 pages
doi:10.1115/IMECE2018-87545
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5204-0
  • Copyright © 2018 by ASME

abstract

This work presents a new systematic solution to identify the vehicle inertia parameters which are essential inputs for vehicle simulation and vehicle safety research. In conceptual design phase of this work, a virtual three Degree-of-Freedom (DoF) test bench/ parallel manipulator (PM) whose moving platform is used to clamp vehicle under test is developed. In order to realize the kinematic characteristics of the proposed PM, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Aiming at obtaining all ten vehicle inertia parameters (i.e., mass, center of gravity and inertia tensor), the observation matrix for parameter identification is derived from the dynamic model of PM. To get the dynamic model, the Euler’s equation and Lagrange approach are applied to implement the dynamic analysis for PM’s moving platform and actuators, respectively. It is beneficial to reduce the complexity of dynamic model and load of numerical computation. In the following section, to minimize the sensitivity of parameter identification to measurement noise, an optimization process of searching for the optimal movement trajectory of PM is proposed. For this purpose, the parameterized finite-Fourier-series are used to definite the general movement trajectory of PM firstly. Subsequently, the parameters of general trajectory are optimized by employing a nonlinear iterative algorithm. Objective of this algorithm is to obtain the minimal condition number of observation matrix and meanwhile to ensure the PM still works in the achievable working space during the test. The results show that the vehicle inertial parameters can be effectively identified by executing the single optimal movement trajectory on the PM. It is expected that the proposed systematic solution could be an important approach to improve the identification efficiency and identification accuracy of vehicle inertial parameters.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In