Full Content is available to subscribers

Subscribe/Learn More  >

A Comparative Study of Rapid Quadrupedal Sprinting and Turning Dynamics on Different Terrains and Conditions: Racing Greyhounds Galloping Dynamics

[+] Author Affiliations
Hasti Hayati, Paul Walker, Fatemeh Mahdavi, Robert Stephenson, Terry Brown, David Eager

University of Technology Sydney, Sydney, Australia

Paper No. IMECE2018-87144, pp. V04AT06A047; 7 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 4A: Dynamics, Vibration, and Control
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5203-3
  • Copyright © 2018 by ASME


Identifying optimum athletic race track surfacing for greyhounds to reduce risk of injuries is a challenging practice as there are several single and coupled variables that should be considered as risk factors. To study the impact of bend and straight sections, surface type and camber, on biomechanics of galloping quadrupeds, an inertial measurement unit (IMU).

has been used to measure the associated galloping accelerations. The IMU was sewn into a pocket located on the back of the greyhounds racing jacket positioned between the two forelegs. Simultaneous kinematics were performed using high frame rate (HFR) videos for calibrating IMU data. The results showed that there were lower G-forces on galloping on grass than wet sand which is consistent with the mechanical behavior of grass (grass is softer than wet sand). Moreover, galloping around the bend had higher G-forces than galloping along the straight section suggesting an excessive force is applied on the greyhound’s limbs due to centrifugal force. A cambered bend assisted the greyhounds in having a smoother gait and lower G-forces when compared to a flat bend. The results reported in this paper will not only be beneficial for the welfare of racing greyhounds, but will also contribute in the simulation of legged locomotion for bio-inspired engineering and robotics.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In