Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and CFD Investigation of Aerodynamic Forces and Moments in a Linear Turbine Blade Cascade

[+] Author Affiliations
Vaclav Slama, Bartolomej Rudas

Doosan Skoda Power, Pilsen, Czech Republic

Jiri Ira, Ales Macalka

NUM Solution, Prague, Czech Republic

Petr Eret, Volodymyr Tsymbalyuk

University of West Bohemia, Pilsen, Czech Republic

Paper No. IMECE2018-86667, pp. V04AT06A041; 8 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 4A: Dynamics, Vibration, and Control
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5203-3
  • Copyright © 2018 by ASME


In order to eliminate occurrences of flutter of low pressure turbine blades it is necessary to understand the associated unsteady aerodynamics. For this reason, an experimental and numerical study of controlled flutter (travelling wave mode) in a linear turbine blade cascade oscillating in a torsional as well as translation motion is conducted. Unsteady aerodynamic forces and moments were measured on a subsonic eight-blade turbine cascade rig where central four blades are flexibly mounted each with two degrees of freedom. Thin blades in the cascade represent the tip section of the last stage rotor blades, which defines the turbine overall performance. A commercially available 3D CFD software ANSYS CFX is used to simulate the unsteady aerodynamic loading in the blade cascade. Experimental data and simulations are compared and influence of aerodynamic forces and moments on flutter is analysed.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In