Full Content is available to subscribers

Subscribe/Learn More  >

Large Deformation Analysis and Experiments With Double Parallelogram Compliant Mechanisms

[+] Author Affiliations
Abhijit A. Tanksale, Prasanna S. Gandhi

Indian Institute of Technology, Bombay, Mumbai, India

Paper No. IMECE2018-87604, pp. V04AT06A024; 8 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 4A: Dynamics, Vibration, and Control
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5203-3
  • Copyright © 2018 by ASME


Compliant mechanisms are highly preferred in applications demanding motion with high precision. These mechanisms provide friction-less, backlash-free precise motion obtained through deformation of flexible members. The double parallelogram compliant mechanism (DPCM) is one the most important compliant mechanisms to obtain highly precise straight-line motion. DPCM when operated in horizontal plane yield high precision straight-line motion (even with large deformations) useful in several engineering applications. However, constraints such as space, dead loads, etc. may demand DPCMs to be used in the vertical plane. For DPCMs operating in a vertical plane, the axial load due to gravity causes tension and compression in flexible beams which get coupled to bending under large deformations. This ultimately affects the parasitic error of straight-line motion. This paper presents a coupled analysis, along with experimental validation, of DPCM operating in vertical plane considering gravity effects with large deformation.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In